
·:t

♦ ♦ ♦ ♦

BNR Prolog
User Guide

■ -- ■

■
■

■

■
■

■

■ ··.

• ■
■ ■ ■

■ ■ ■ ■
■ ■ ■ ■

■ ■ ■ ■

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

--

■

■ . -.

0

]

_J

l

J

7

■ I
■

■

-■
■■

---■■■
■■■■

•

■■■■■
■■■■■■
■■■■■■ ■

BNR Prolog
User Guide

©Bell-Northern Research Ltd. 1988. All Rights Reserved.

Table of Contents

Table of Contents

[F)®[J'fi □ □ rrufi[J'@@lM@UO@rru

Chapter 1 BNR Prolog Product Information

Inventory

System Requirements

Software

User Guide Overview

Chapter 2 Logic Programming

Prolog

Suggested Prolog References

Chapter 3 The Prolog Model

Chapter 4 Using the BNR Prolog System

Chapter 5 Pure Prolog

BNR Prolog Terms

Unification

Call

Backtracking

Conjunction

Putting It Together

Characteristics of Pure Prolog ·Programs

BNRProlog User Guide

l]

3

3

3

4

5

7

7

8

1 1

1 9

31

32

35

39

40

47

51

53

II Table of Contents

Chapter 6 Filters and Negation
Monotone Filters

Persistent Filters

Constructed Filters

Chapter 7 Passive Constraints

Constraint Notation

Constraint Interpolation

Generalized Types

Sound Negation and Negative Knowledge

Chapter 8 Control
Eliminating Computation Branches

Directing Execution

Active Constraints

Chapter 9 Operators
Specifying an Operator

Predefined Operators

Chapter 1 O Cyclic Structures

Cyclic Structure Support

Chapter 11 Functional Arithmetic

Evaluation

Extending Functional Arithmetic

Arithmetic with Constraints

Chapter 12 Relational Arithmetic
The Interval Type

Evaluating Interval Expressions

BNRProlog User Guide

59

61

61

64

69
70

72

73

75

81

81

83

89

97
98

101

103

103

7} 7} 71

119

120

121

125

131

133

139

Table of Contents Ill

Using Relational Arithmetic 151

Summary 171

[F)®~ aw [F)rr@@rr@[rui)[rui)ncru@ wnami ®n@J@

Chapter 13 Text Input and Output
Streams

Detecting 1/0 Errors

Read and Write Predicates

Chapter 14 The Knowledge Base

Contexts

Asserts and Retracts

Chapter 15 State Spaces
Global State Space

Local State Spaces

Chapter 16 User Interfaces
Events

Windows

Pictures

Menus

Dialogs

A Complete Program

[F)®~ W [Mln®©@□□®lru@@M®

Chapter 17 Foreign Language Interface

Defining and Calling Externals

Writing an External Procedure

Pascal Examples

~ml@©l!® 'i] a'~
177
178

182

182

189
190

197

201
202

207

211
213

219

231

232

236

238

~~®

247

247

248

250

BNRProlog User Guide

IV Table of Contents

C Examples

Chapter 18 System Information

Application Structure

Monitoring the Environment

Building an Application

Managing Error Conditions

Chapter 19 The Debugger
The Box Model

Debugging a Program

Entering the Listener

Debugging Event Handlers

Chapter 20 Prolog Compatability Issues
Sequences

Sequences in Terms

Operators

LA\[p.)[p.)@[Ji)(fil ~©@®

Appendix A:

ti(Apple) menu

File menu

Edit menu

Find menu

Window menu

Contexts menu

Menu Command Shortcuts

Editing Keys

Execution Control Keys

BNRProlog User Guide

257

261

261

265

266

274

277
277

280

287

288

291
291

296

302

~@®
307

307

308

310

311

313

315

317

318

319

Table of Contents v

Methods of Text Selection by Mouse 319

BNRProlog User Guide

Part 1 Introduction 1

[F)@[rU □
□ rrou [r@@l M@U n@rro

BNR Prolog User Guide

Chapter 1 BNR Prolog Product Information 3

Chapter 1
BNR Prolog Product Information

BNR Prolog is a full featured implementation of Prolog for the
Macintosh family of computers. It extends the power of earlier
generations of Prolog by providing constraint management and
relational arithmetic facilities that greatly enhance both the
logical features of the language and its problem solving power.

Inventory

The BNR Prolog package contains the following:

- BNR Prolog User Guide

- BNR Prolog Reference Manual

- Warranty/ License

- Application Disk and Tutorial Disk

- Registration Card

System Requirements

The BNR Prolog system runs on any Apple Macintosh computer
with a minimum of 1 megabyte of memory. A system with a
hard disk drive is recommended.

The versions of the Macintosh system software required are

- version 4.1 or higher of the System file

BNR Prolog User Guide

4 Part I Introduction

- version 2.0 of the MPW Pascal , C, and assembly language
interfaces (for those wishing to write their own externals)

Software

The BNR Prolog disk should appear on the Macintosh desktop as

BNR Prolog Release Disk

BNR Prolog is the BNR Prolog application

Utilities is a folder of files that provide extensions to the basic
application

Demos is a folder of demonstration programs

Tutorials is a folder containing all Prolog examples and
programs found in this user guide

BNR Prolog User Guide

Chapter 1 BNR Prolog Product Information 5

User Guide Overview

This document is intended as a guide to the use of BNR Prolog for
users learning Prolog and for experienced users. New users are
also encouraged to read one of the recommended textbooks on
Prolog listed in the next chapter. The guide has been divided into
five parts of related topics, and an appendix:

Part I discusses the philosophy of Prolog, and gives a short
tutorial on the use of BNR Prolog.

Part II reviews the concepts of "pure" Prolog, describing
deviations, and the ways in which filters and
constraints can emulate the effects of pure Prolog.
Operators and the support of cyclic structures are
also described.

Part III provides detailed information about the use of
arithmetic. Aside from functional arithmetic,
which results in deviations from the pure Prolog
model, intervals are provided as a foundation for
relational arithmetic, allowing arithmetic
relationships to expressed logically.

Part IV describes methods of programming with side effects,
another deviation from pure Prolog. This includes
such topics as input and output, management of the
knowledge base, state spaces, and support for
effective user interfaces.

Part V provides additional information on developing,
debugging and building applications using the BNR
Prolog development environment. Compatability
with Edinburgh Prologs is also discussed.

Appendix summarizes of the BNR Prolog desktop information,
giving details of the menus and command shortcuts.

BNR Prolog User Guide

6 Part I Introduction

Users new to Prolog should read "Part I Introduction" and the
chapter "Pure Prolog". All examples in this guide are provided
on the tutorial disk to encourage experimentation. More
advanced topics such as constraints and relational arithmetic
may be left for later.

This user guide should be used in conjunction with the
BNR Prolog Reference Manual. Whereas the user guide is
designed to instruct and explain general concepts, the reference
manual is organized to facilitate quick access to complete
information on specific topics.

Typographic Conventions

The following typographic conventions are used throughout this
guide:

Typeface Examples are displayed in this typeface. It is used to
display any text which appears on the screen or in a
program listing. BNR Prolog built-in predicate
names and their corresponding arguments also
appear in this special typeface.

Italics Italics are occasionally used to highlight key words
or concepts in the text, particularly the first time
they are defined. As well, italics are used when
specifying the use of certain keyboard characters, for
example, press return, or when making explicit
references to titles of books.

"Quote" Quotation marks are occasionally used to highlight
words or statements in text. Quotation marks are
also used when making cross-references to chapter
titles.

'Symbol' The basic Prolog type symbol can be enclosed in
either double or single quotation marks. Single
quotation marks have been used with symbols
throughout the text.

BNR Prolog User Guide

Prolog

Chapter 2 Logic Programming 7

Chapter 2
Logic Programming

The cornerstone of logic programming is the idea that symbolic
logic can be used as a programming language. Symbolic logic
offers both a declarative method of expressing relations between
objects, and through the automation of logical reasoning, a
procedural method of interpreting these relations. Thus, logic
programs are both specifications in the language of logic, and
executable instructions for a computer.

The appeal of logic programming is that it frees programmers
from the need to explicitly encode every task the computer must
perform to solve a problem. Instead, explicit coding is replaced
by a task better suited to human thinking: declaring one's
thoughts in the language of logic.

Prolog is based on a subset of logic, and is currently the most
successful implementation of a logic programming language.
A Prolog program is a set of sentences that have the following
structure:

P <- Al & A2 & A3 ... & An

Declaratively this statement is read as P is true if all Al,
A2, A3, ... , and An are true. This subset oflogic, known as
Horn clause logic, forms the pure or logical part of Prolog.

Extending pure Prolog to provide a practical programming
language requires the introduction of language features that
may result in "nonlogical" behavior. Nonlogical features in a
logic programming language modify the declarative reading of
programs and force the programmer to express his or her ideas

BNR Prolog User Guide

8 Part I Introduction

in a procedural way. Among these additions to pure Prolog are
mechanisms for :

- controlling the flow of execution of a program

- communicating with input and output devices

- executing arithmetic efficiently

- manipulating Prolog programs

In recent years, several new techniques have been developed
which isolate or remove the nonlogical effects of the additions to
pure Prolog. Among these are logical constraints and relational
arithmetic. In addition, some extensions of the BNR Prolog
language permit programming tasks involving program
manipulation to be logical. These features of BNR Prolog
simplify many programming tasks and, in many cases, permit
more efficient implementations.

Suggested Prolog References

Readers who are new to Prolog may find it useful to accompany
this user guide with one of the following text books:

Bratko, I. Prolog Programming for Artificial Intelligence.
Wokingham, England, Reading, Mass., Menlo Park,
Calif., Don Mills Ont.: Addison-Wesley, 1986

Clocksin, W. F., and Mellish, C. S. Programming in Prolog. 3rd
ed. Berlin, Heidelberg, New York, London: Springer
Verlag, 1984.

Covington, M. A., Nute, D., and Vellino, A. Prolog Programming
in Depth. Glenview, Ill., London: Scott, Foresman
and Company, 1988.

BNR Prolog User Guide

Chapter 2 Logic Programming 9

Pereira, F. C. N., and Shieber, S. M. Prolog and Natural
Language Analysis. CLSI Lecture Notes, 10.
Stanford: Center for the Study of Language and
Information, University of Chicago Press, 1987.

Sterling, L., and Shapiro, E. The Art of Prolog. Cambridge,
Mass., London England: The MIT Press, 1986.

BNR Prolog User Guide

Chapter 3 The Prolog Model 11

Chapter 3
The Prolog Model

The underlying model for conventional high level languages was
established nearly three decades ago with FORTRAN, although
many users of personal computers may be more familiar with
this model through the medium of Basic. Examining some of
the fundamental characteristics of FORTRAN helps to highlight
the basic differences between Prolog and conventional
languages.

FORTRAN distinguishes code from data. Data consists of
numbers, while code consists of arithmetic expressions,
assignment statements, and some control constructs. The link
between code and data is the variable. A variable, which is
referenced in arithmetic expressions, is the name of a cell
holding changing data elements. Code is procedural in that it
describes the step by step actions to be performed, and is written
primarily as sequences of actions. Control constructs link the
sequences.

The evolution of conventional languages, from FORTRAN
through Algol and Pascal to Ada, has progressively enriched the
repertoire of both control and data structures, but has not altered
these basic characteristics. Some of the characteristic problems
of conventional programs, such as variable name aliasing and
side effects, are due to the variable concept.

This procedural model of computation is not the only one. At the
time that FORTRAN was being formulated, a radically different
model was proposed in the language LISP. In its pure form,
LISP eliminates any intrinsic distinction between code and data,
and dispenses entirely with variables. Instead, it focuses on a
generic treatment of structures built from lists, a general notion
of abstraction, and a mechanism of function evaluation. These
are all coordinated by a powerful theoretical model. It is not

BNR Prolog User Guide

12 Part I Introduction

surprising that LISP and the conventional languages are seen
as complementary, since one excels in precisely those areas
where the other has the most difficulty.

Prolog arose from quite a different environment, the field of
automatic theorem proving. Prolog has retained much of the
flavor and the vocabulary of symbolic logic, but only recently has
been recognized and developed as a useful programming
language. As a consequence, Prolog employs two distinct
vocabularies and interpretations, one based on the viewpoint of
formal logic and the other on the art of programming. This dual
nature may be a source of confusion for new Prolog
programmers, but it is also one of Prolog's great strengths.

To describe the basic computational model of Prolog, we start
with the schema

question+ knowledge-> answer

Instead of the conventional distinction between code and data, we
distinguish between questions and knowledge. Consider the
example

question: Was it cold on Saturday?
knowledge: It was snowing on Saturday.

It was cold if it was snowing.
answer: It was cold on Saturday.

Although there is a distinction between questions and
knowledge, the form of both is roughly the same, that of
grammatically correct sentences. To be sure, in natural
languages, grammatical details and inflections may vary
between a question and the corresponding answer, but the
essential relations expressed in them are the same.

The fundamental principle which led to Prolog is the realization
that if one uses a somewhat austere relational language, then
the forms of questions and statements of knowledge become
identical. As a result, the process of combining the question and
relevant knowledge becomes a mechanical operation. Thus, the
previous example is rephrased formally as

BNR Prolog User Guide

Chapter 3 The Protog Model 13

cold(saturday)? question:
knowledge: cold(_x) :- snowing(_x).

snowing(saturday).
answer: cold (saturday).

The symbol " : - " means if.

cold(_x)

means

snowing (_x) .

cold(_x) is true if snowing(_x) is true.

The symbol x, is a logic variable and is intepreted as anything.
The expresswn cold (x) is a structure: such structures are the
basic units of information storage, and are analogous to records
in Pascal. Sentences are called clauses, and consist of rules
(p : - q.) and facts (p .).

The procedure known as inferencing matches the
question/answer (goal) against the conclusion of each rule. This
matching process, called unification, is described in more detail
in the chapter Pure Prolog. The substitution of values for
variables, called instantiation, plays the role of parameter
passing in a conventional language. In this case

cold(saturday)

matches

cold(_x)

if x is instantiated with saturday. Making this substitution
everywhere in the rule produces the instance

cold(saturday) :- snowing(saturday).

which reduces the original question to

?- snowing(saturday).

Thus, each inference can be thought of as consisting of two steps:
unification (matching) of the question against the rules in the

BNR Prolog User Guide

14 Part I Introduction

knowledge base, and reduction, which replaces the original
question with a new one derived from the rule. The existence of
such a rule in the knowledge base is a license to perform such an
inference any number of times.

The reduction of a goal is generally composed of many
inferences, each of which is analogous to a procedure call in a
conventional language. The word call is therefore used to
designate an inference. The reduction step, which makes the
conditions of the rule the new question, is analogous to executing
the body of a procedure in a conventional language. Thus, we
refer to the condition(s) in a rule as the body of the rule.

One more inference step, this time matching

snowing(saturday)

with

snowing(saturday)

reduces the original goal to an empty question, thus terminating
the process. If a sequence of calls leading to the empty question
cannot be found, then we say that the question fails. Generally
this means only that the knowledge base is unable to provide an
answer to the question.

The answer is a consequence of the knowledge base, because it is
the result of a finite number of calls. Furthermore, the answer
is always an instantiation of the question; that is, it has the same
form but may have some variables instantiated during the
inference process. Thus the question, when sufficiently
narrowed, becomes the answer. (It is convenient to regard the
special case of a question that fails as an extreme case of
narrowing.)

To express more complex knowledge, we must allow joint
conditions to be associated with a conclusion. For example,

It was too cold for skiing
if it was cold and the wind was gale force.

BNR Prolog User Guide

Chapter 3 The Prolog Model 15

might be expressed as

too_cold_for_skiing(_x) :-
cold(_x), wind_force(gale, _x).

where the "," represents and then. The precise conditions under
which the more general and then interpretation reduces to the
simpler and interpretation is discussed in detail later.

Intuitively one expects that a question might have alternative
answers, all equally valid if not equally useful. This concept has
no counterpart in conventional programming languages. To
illustrate, consider a modified version of the cold example

question:
knowledge:

answers:

cold(_what_day)?
cold(_x) :- snowing(_x).
snowing(saturday).
snowing(wednesday)
cold (saturday) .
cold (wednesday) .

Each alternative answer is produced by the same inference
procedure, but is the result of a different choice of which rule to
apply at each step. In some cases there may even be, in
principle, an infinite number of different answers.

A third characteristic of Prolog is the method, called
backtracking, by which alternatives are explored. From a group
of alternatives, one is chosen and pursued. If it fails, the system
backtracks to the last choice made (undoing any instantiations
made in the interim) and tries another alternative. The order in
which alternatives are tried is determined by the order of the
alternative clauses in the knowledge base.

Essentially, Prolog has two built-in general mechanisms for
solving problems. One, narrowing, is efficient but relatively
weak. The other, exhaustive search, is strong but inefficient.
The art of Prolog programming is to combine these two
mechanisms in a way that is both efficient and effective for a
given class of problems. One strategy for combining the two is to
emphasize narrowing. Narrow the problem as much as

BNR Prolog User Guide

16 Part I Introduction

possible, and then subdivide it. Alternatively, exhaustive search
can be emphasized, with narrowing as a constraint on the
search.

Summary

The previous section introduced

- the question + knowledge -> answer paradigm

- a uniform relational notation

- primitive inference step or call

- answers as narrowing of the question

- sequential conjunction

- alternative answers

These basic concepts are reflected in a number of specific
implementation details.

The distinction between knowledge and goals is represented by
dividing the system into two regions. The clause space holds the
knowledge, while the goal stack holds questions and answers.
The knowledge base in BNR Prolog can be structured into
distinct layers or contexts, as discussed in the chapter "The
Knowledge Base".

When not answering a question, the system waits for user input.
The part of the system responsible for user interaction (key
strokes, menu selections, mouse clicks) is called the listener.

Each sentence entered into the system by the user can be either a
question or an addition to the knowledge base, and some
convention is required to determine which case applies. The
convention used is that all sentences end with a period, but
questions begin with the question prefix "?-". For example,

BNR Prolog User Guide

?- cold(saturday).
cold (saturday) .

Chapter 3 The Prolog Model 17

% this is a question
% this is an addition
% to the knowledge base

Since questions are frequent, the listener supplies the"?-". In
such cases, the question prefix need not be typed, providing the
question is entered after"?-". The question/answer relationship
is represented by echoing the question with the answer
substitutions. If there is no answer, then NO is output. If there is
more than one answer, then the first answer is displayed, and
the system waits for input telling it to proceed as follows

- a semi-colon "; ", generates the next answer if there is one

- a return prints all the answers without further prompting

- and any other key will terminate the question

BNR Prolog User Guide

Chapter 4 Using the BNRProlog System 19

Chapter 4
Using the BNR Prolog System

The~'•· ironrein,,en1s ttieBNR Prolog appliralim, and th,, t\~lron
represents a document file created using that application.
Opening either icon loads the BNR Prolog application, and
creates an interactive text window labeled Console that is the
default output stream. Opening a document file has the
additional effect of opening a text window on the file. If several
text documents are opened by the user each has a separate text
window.

Edit Find Window

DISK:BNR Prolog:Console

DISK:BNR Prol :Tutorials:FAMIL

Opening a BNR Prolog Document

The BNR Prolog desktop is made up of a multi-window text editor
and a menu bar. Text is input interactively to the underlying
BNR Prolog system from any text window by selection (using
standard Macintosh selection practices), and entry (using the
enter key). If no text is highlighted, the line on which the cursor
is currently positioned is the default selection. The part of the
system that handles user interaction is called the listener.

BNR Prolog User Guide

20 Part I Introduction

Other than the special significance of the enter key, BNR Prolog
provides a standard set of file handling, window handling and
text edit commands through a menu/mouse interface. Shortcuts
to many commands are also available through a Command key
sequence. (See the descriptions of the Desktop and Editing Keys
in the "Appendix" for further details)

The activity box to the left of the horizontal scroll bar in the active
text window displays the current application state. For example,
the listener may display listening when waiting for a question,
or running when searching for answers. The message in the
activity box is programmable, so other messages that depend on
the activity in progress may be displayed.

It is possible to input from any part of an open document.
Selecting part of the document and pressing the enter key causes
just the selected portion of the text to be passed to the system. The
enter key, which is always tied directly to the system, sends
selected text to the system from any activated window. System
responses to entered text (such as answers or confirmations)
appear at the end of the Console window. In summary, default
input is from the active text window; default output is to the end
of the Console window.

BNR Prolog User Guide

Chapter 4 Using the BNRProlog System 21

Tutorial: Using a BNR Prolog Document

This tutorial uses the FAMILY knowledge base to familiarize you
with the BNR Prolog system on the Macintosh. It can be found
in the Tutorials folder that is provided with the BNR Prolog
application.

Instructions are provided to lead you through opening a text
document, performing some window manipulations, selecting
and entering text, and use of ConteHts menu.

The clauses displayed in the following example provide a very
basic set of facts and rules. (Comments are designated by "/ *
* /").

Program FAMILY

/*FAMILY*/

/* Part of a family tree*/

/* For "father", "mother", and "parent", the first
argument is the parent and the second is the son or
daughter*/

father('Michael', 'Sue').
father('Stephen', 'Michael').
father('Stephen', 'Julie').
father('Harry', 'Stephen').
father('Pierre', 'Sarah').
father('Pierre', 'Odette').
father('Charles', 'Pierre').
father('Greg', 'Caroline').

mother('Sarah', 'Sue').
mother('Hazel', 'Michael').
mother('Hazel', 'Julie').
mother('Eleanor', 'Sarah').
mother('Eleanor', 'Odette').
mother('Odette', 'Caroline').

BNR Prolog User Guide

22 Part I Introduction

parent(_X, _Y) :- father(_X, _Y).
parent(_X, _Y) :- mother(_X, _Y).

/* queries for testing purposes*/

/*
?- father(_Parent, _Child).
?- listing.
*/

Opening a Document

n
~

FAMILY

Tiling Windows
Tile TeHt Windows
Hide Window

1 DISK:BNR Prolog:Consol~

3€J

I DISK:BNR Prolog:Tutorials:FAMILY

T DISK:BNR Prolog:Tutorials:Untitled1

BNR Prolog User Guide

◊ Using standard Macintosh methods of
opening applications and files, find the
text document FAMILY in the Tutorials
folder and open it. This provides you
with two text windows, Console and
FAMILY, the latter being the active
window.

◊ Pull down the File menu and choose
New Create an empty text window
called Unti tledl. This is now the active
window.

◊ The Window menu displays the names
of all open text windows, with that of the
currently active window displayed in
bold. Choose Tile Te Ht Windows. This
permits you to see all of the text windows
at once. Notice that the listener has
output the question prefix,"?-" to the
Console window.

Entering Sentences by way
ofConsole

Querying by way of Console

Using a Question Window

Chapter 4 Using the BNRProlog System 23

◊ Select the Console window, and
individually enter the sentences

father('John', 'Mary').
father('John', 'Michael').

Be sure to back space over the question
prompt before typing. OK output after a
sentence confirms the addition of the
sentence to the knowledge base.

◊ Type the following query in the Console
window and input it by typing enter at the
end:

?- father(_Parent, 'Mary').

◊ Select the window Untitledl, and type
the following fact and query, using
return to go to a new line:

father('John', 'Marsha').
?- father(_Parent, _Child).

◊ Select and enter the query. After the
first answer is displayed, type return to
obtain the remainder. Only the original
two facts are in the knowledge base. Note
that the active window after a query is
Console. Enter Command-. if you wish
to discontinue the output at any time.

◊ Select and enter the fact in the
Untitledl window, and then repeat the
query.

BNR Prolog User Guide

24 Part I Introduction

Loading from a Window

Multiple Solutions
?- father(_Parent, _Chilq).
father('Michael', 'Sue'):;:
father('Stephen' ,' Michael'))j
father(Stephen, I Julie') m ...
father('Harry', ' Stephen')]
father('Pierre', 'Sarah') W
father('Pierre', 'OdettEifg
YES -

BNR Prolog User Guide

◊ Select the window FAMILY, then pull
down the ConteHts menu and choose
Load Window. This loads the contents
of the file FAMILY on top of the existing
knowledge.

◊ Select and enter

?-father(_Parent, _Child).

from the FAMILY window to query the
predicate father. The listener outputs
the first answer,

father('Michael', 'Sue').

and then waits to see if you want
additional answers.

◊ Type 11
;

11 to indicate that another
answer is desired. This may be repeated
until no further answers are possible, or
if return is typed, all answers are output
without pause. Typing 11 q11 (or some other
key) ends output immediately.
YES output after a query indicates that
there was at least one answer to the
question posed.

◊ Repeat the query. After the first
solution, type return to obtain all possible
solutions. Note the changes in the
activity box in the lower left corner. Note
that the sentences entered as knowledge
before loading FAMILY are the last
solutions.

Listing a Predicat.e

Multiline Input

Chapter 4 Using the BNRProlog System 25

◊ List all of the clauses that make up the
predicate parent by typing in the
Console window

?-listing(parent).

◊ Select and enter the query

?- listing.

from the FAMILY window. Note that all
known clauses in FAMILY are displayed
in the Console window.

◊ Type the following

ancestor (_Parent, _ Child)
parent (_Parent, _ Child) .

ancestor (_Parent, _ Child)
parent (_Parent, _X),
ancestor(_ X, _ Child) .

in the Console window. Select both rules
and type enter.

◊ Now list or query the new predicate. It
has automatically become part of the
currently active FAMILY knowledge base.

BNR Prolog User Guide

26 Part I Introduction

Listing by Menu

Reloading a Window

Exiting a Cont.ext

BNR Prolog User Guide

◊ Pull down the ConteHts menu. The
bottom section of the menu lists the
existing contexts (see the chapter
"Contexts"). The most recently loaded
file, FAMILY, is the newest context.
Choose userbase, then FAMILY, and note
the differences in the list of predicates. If
you select father, you will see both the
clauses you entered into the Console and
the Untitledl windows, as well as the
clauses from the file FAMILY, with the
context of each displayed as a comment.

◊ Note that the predicate ancestor is part
of FAMILY. Although it was not in the
original file, it was automatically added
to the top context, which is FAMILY.

◊ Select the window FAMILY. Pull down
the Conte Hts menu again, and choose
Load Window. Use the menu to list the
predicates in FAMILY again. The effect of
this command is to reload the context
FAMILY with the contents of the window.
Since ancestor was not added to the
window FAMILY, it was not reloaded.

◊ Using the ConteHts menu once more,
choose [Hit Conte Ht and select FAMILY

from the submenu. The ConteHts
menu now has no item for FAMILY.
(Exiting userbase will remove the
context, but the system will create a new,
empty userbase.)

Chapter 4 Using the BNRProlog System 27

SavingText 0 Use the Soue us ... command in the
File menu if you want to save your text in
a disk file before you quit. This saves a
copy of your version of FAMILY on disk.
Note that the window has been replaced
by the new file.

Quitting 0 When you are ready, select Ou it from
the File menu, and answer any questions
about saving the updates. (You probably
do not want to save the Console.)

For further information on the use of the menu/mouse interface,
see the description of the Desktop in the "Appendix".

BNR Prolog User Guide

Part II Prolog, a Logic Programming Language 29

[F)®[fU □□
[F)[f@ □©®z; ® f1@® □©

[p [f@® [f ® rJi1il rJi1il □ [n) ® f1® [n) ® M ®@@

BNR Prolog User Guide

Chapter 5 Pure Prolog 31

Chapter 5
Pure Prolog

Pure Prolog is the heart of the language. Historically it was the
earliest part of the language to be developed, and its properties
give the language its characteristic flavor. The pure Prolog
subset was originally developed as an implementation of Horn
clause logic, which is a subset of first-order predicate calculus.
In this model the rule

p(_X, _Y) :- q(_X, _Z), r(_Z, _Y)

represents the predicate calculus expression

(X) (Y) (Z) ~q(X, Z) V ~r(Z, Y) V p(X, Y)

Many Prolog text books take Horn clause logic, or even full first
order predicate calculus, as their starting point for describing
pure Prolog. The connection between Horn clause logic and the
formal properties of the pure subset will be discussed in more
detail later.

BNR Prolog User Guide

32 Part II Prolog, a Logic Programming Language

Another approach, which we will follow, is to think of the pure
subset as the language generated by call, conjunction,
backtracking, and nothing else. People who are primarily
interested in programming usually find this approach more
natural. Before discussing the programming mechanisms of
pure Prolog, it is important to cover some basic syntax issues.

BNR Prolog Terms

Each sentence in a BNR Prolog program consists of a term
followed by a period,".". A term may be a simple constant (such
as a number or a symbol), a logic variable, or a compound term.
The following discussion briefly describes each type; for a more
detailed description, refer to the BNR Prolog Reference Manual.
Programs may also contain comments which are ignored on
input. Comments have two forms. If enclosed in "/ * * / ", a
comment may carry over more than one line. Comments of this
form may be nested. Within a single line, any text between"%"
and the end of the line is a comment.

Numbers

Integers are whole numbers in the range of -268435456 (that is
-228) to 268435455 (228 - 1).

Floating point numbers are in the range -3.4e+38 to 3.4e+38, and
may be specified in fixed point (for example 123.45) or scientific
notation (for example 1.2345e2).

Symbols

Symbols are case-exact, must not begin with an upper case letter
or an underscore,"_", and may be any arbitrary sequence of up
to 255 alphanumeric characters. Symbols are used to represent
operators, data, or clause names. Any sequence of characters
may be used as a symbol by enclosing it in single or double
quotes. Some examples of symbols are '123 ','Abner', boy,+.

BNR Prolog User Guide

Chapter 5 Pure Prolog 33

Variables

Lists

A variable name begins with an upper case character or with an
underscore. A single underscore, " ", denotes an anonymous
variable. Each occurrence of an anonymous variable is distinct
from any other. Some examples of variables are 21, Mexico, ,
Book, table. Variable names are always output with a leading
underscore to make them more readily distinguishable from
quoted symbols beginning with uppercase letters.

A list is a construct that groups zero or more terms into a single
term. The elements in a list, an ordered sequence of terms,
must be separated by commas, ", " and the entire list must be
enclosed in square brackets, " [] ". Available memory is the only
limit to the number of terms in a list. Some examples of lists are
[a, 2, [carrot, radish]], ((1, 2], []].

Often a list is broken into the initial elements, and the tail (the
following sequence of elements). The syntax List .. specifies
the tail of a list and is called a tail variable. A tail variable is only
valid within a list or a structure (see below), and must be the last
element before the closing bracket.

In any sentence using a tail variable List .. , the expression
List may be used to represent [List ..]. Some examples

containing tail variables are [a, b, _x ..], [_tail..],
[_First, _Rest ..].

The common "bar" notation, as in [First, _Rest], is
accepted on input and coerced to [First, _Rest ..] .

Structures

A structure consists of a symbol or variable immediately followed
by a parenthesized list. Thus, all the features of lists also pertain
to structures. Some examples of structures are
neighbor('James', 'Charles'),_Function(_Args ..).

BNR Prolog User Guide

34 Part II Prolog, a Logic Programming Language

Clauses

Clauses are terms which are asserted into the knowledge base.
The head of a clause(the left hand side of":-") is always a
structure, and the body (the right hand side of":-") is always a
list.

A clause is recognized by the first symbol (hereafter called the
clause name) in the head of the sentence. One or more clauses
with the same name are grouped as a predicate definition ,or
predicate. If there are no arguments in the head of a clause, the
structure may be written without parentheses. However, the
clause head is coerced to a legitimate structure syntax with an
empty parenthesized list.

A tail variable may be the last term in an argument list. This
feature permits the definition of predicates which take a variable
number of arguments. Such predicates are called variadic.

Rules are sentences that permit the inference of information
from the truth of some other information. The key to rules is the
concept if, represented by the symbol":-", which separates the
head and the body. Some examples of rules are

father(_X, _Y) :- parent(_X, _Y), male(_X).
parent(_X, _Y) :- mother(_X, _Y).

The parser accepts rule definitions without the brackets that
denote a list structure, but the clause body is coerced to a
legitimate list.

Facts are the simplest type of clause, since the body of a fact is
the empty list," [] ". They are used to express a primitive
relation between the arguments. The meaning of the relation,
and the ordering of the arguments depend entirely upon your
convention. Some examples are

mother('Sue', 'Michael').
year_end.

BNR Prolog User Guide

Chapter 5 Pure Prolog 35

Facts are coerced on input to the standard clause form.
year end must have both the head coerced to a structure, and
the trul coerced to a list:

year_end() :- [].

Facts are displayed without the clause body when listed.

Unification

The pure Prolog call mechanism consists of unification followed
by goal reduction. Using the built-in unification operator"=",
helps to understand the meaning of unification. Questions of the
form

?- X = Y.

succeed if and only if the terms x and Y unify. As the notation
x = Y suggests, unification can be thought of as an

equivalence relation, that is, a relation satisfying the following
equivalence laws:

refl,exive x = x for any term x

symmetric x = Y if and only if Y = x

transitive if _ x = Y and Y = z, then _ x = z

Unifying Ground Terms

Terms with no variables, ground terms, unify only if they are
identical:

Succeed Fail

?- fred = fred. ?- fred = george
?- 2 = 2. ?- 2 3.
?- 0.123 = 0.123. ?- 1 1.0.

?- 2 1 + 1.

BNR Prolog User Guide

36 Part II Prolog, a Logic Programming Language

Unification of a number with an arithmetic expression does not
succeed because the left argument is an integer while the right
argument remains an unevaluated expression. (The operation
"==" evaluates its arguments and compares the results; this is
covered in the chapter Functional Arithmetic.)

Lists or structures unify if and only if their corresponding
elements unify.

Succeed

?- [2, 1.1] = [2, 1.1].
?- f(2, [a])= f(2, [a]).

Fail

?- [2, []] = [2, 1.1].
?- f(2) = f(2, b)

Thus, for ground terms (terms containing no variables)
unification is just equality of terms.

Unifying Variables

If we think of each variable as representing a definite but
unknown term, then the interpretation of unification as equality
can be extended to terms involving variables as well. Since a
variable represents any term, it unifies with any term, as
demonstrated in the following successful queries:

?- X = fred.
?- fred Y.
?- z = 2.
?- w = [a, b, c].

?- g(a, 2, []) t.

Unifying two variables causes them to become one variable, as
the following query demonstrates.

?- _x = _y.
?- (_X _X)

YES

The substitution of terms that result from unification are seen in
the answer. Although only one name is displayed, the result is

BNR Prolog User Guide

Chapter 5 Pure Prolog 37

in fact symmetric. (This is a particularly striking example of the
difference between logic variables and conventional variables.)

As with unification of ground terms, lists or structures
containing variables unify if and only if their corresponding
elements unify. Thus, in

?- [fred, 2 ,1.1) = [fred, _Y, _Z].

unifying the pattern [fred, Y, z] effectively checks for a list
of length 3 with fred in the first position and extracts the second
and third elements in one operation. It is important to be aware
that each variable can take on only one value at a time. Thus,

?- [fred, 2, 1.1] = [_X, _Y, _XJ.

fails, since _X cannot be both fred and 1.1 at the same time.

The unification of structures is similar to that of lists, as
demonstrated in the following successful queries:

?- _F(_X, _Y) = g(2, 3).
?- _F(_X, fred) = _G(3, _F).
?- _F(_X, _Y) = 2 + 3.

Note that this applies also for those structures which are
syntactically represented by operators, as is demonstrated in the
last example, where Fis bound to the operator"+". Note that
2 + 3 isequivalentto'+• (2, 3).

The effects of unification can easily become quite complex, as is
demonstrated by the following queries and answers.

?- [_X, _Y, _Z] = [_Y, Z, _A].
?- ([_X, _x, _X] = [_X, _x, _X])

YES

?- [_X, f(_X, _Z), _Z] = [2, f(_U, _V), _CJ.
?- ([2, f (2, _Z), _Z] = [2, f (2, _Z), _Z])

YES

BNR Prolog User Guide

38 Part II Prolog, a Logic Programming Language

Unifying Tail Variables

A tail variable can be unified with a sequence of terms. For
example, in

?- [_A, _X ..] = [1, 2, 3, 4].

A unifies with 1, and [x .. J becomes [2, 3, 4 J. The term
[_ x .. J unifies with any list. For example

Succeed Fail

?- [_x .. J [l . ?- [_x .. J f.
?- [_x .. J [fl . ?- [_x .. J f(2, 3) •

?- [_x .. J [2, z .. l . ?- [_x .. J 2. -
?- [_x .. J V.

A list which ends with an uninstantiated tail variable, known as
an indefinite list, can be extended by instantiating the tail
variable. In the query

?- [[a, _ X •• l , [b, _ Y •• l l = [_ Z, [_ X •. l l .
?- ([[a, b, _Y ..], [b, _Y ..]] =

[[a, b, _Y ..], [b, _Y ..]])
YES

the indefinite list [x .. J is instantiated to the list [b, Y .. J,
which contains another tail variable. Tail variables may also be
used in structures, as seen in

?- _F(_X ..) = g(2, 3, 4, 5).

where F is bound to g and [x .. J to [2 , 3, . 4 , 5 J , thereby
splitting the structure into its principal functor g and its
argument list [2, 3, 4 , 5 J .

BNR Prolog User Guide

Call

Chapter 5 Pure Prolog 39

Experimentation with more complex examples of lists and
structures reveals some exceptional cases. For example,

?- [_F (2, 3), _F] = [_G, 4].

produces an error condition, since it creates an invalid term,
4 (2, 3) . Methods of preventing such errors are discussed in
the chapter "Filters and Negation".

Another phenomenon which might be puzzling at first is the
creation of an infinite term or cyclic structure. For example,

?- _F = g(2, _F).
?- (g(2, g(2, g(2, g(2, g(2, g(2, [..]))))))))))) =

g(2, g(2, g(2, g(2, g(2, g(2, [..])))))))))))).
YES

?- [_ X .•] = [2, 3, _ X •.] .
?- [2, 3, 2, 3, 2, 3, ...] = [2, 3, 2, 3, 2, 3, ...]

YES

Cyclic structures, also known as rational trees, are rarely used
in Prolog programs, but it is important to know they can be
created and used. They are discussed further in the chapter
"Cyclic Structures".

Explicit unification, "=", is used infrequently, because implicit
unification is performed with every call to a clause. To explain
this concept, assume that the following fact is part of the
knowledge base:

reduce(_A * B + A* _c, _A* (_B + _C)).

This fact corresponds to the distributive law of arithmetic, and is
useful in simplifying arithmetic expressions. The formal
arguments of this fact are implicitly unified with the actual
arguments on each call, as demonstrated in the following
queries:

BNR Prolog User Guide

40 Part II Prolog, a Logic Programming Language

?- reduce(_Y, a* (b + c)).
?- reduce (((a * b) + (a * c)), (a * (b + c)))

YES

?- reduce(a * (b + 4) +a* c, _X)
?- reduce (((a * (b + 4)) + (a * c)), (a * ((b + 4) + c)))

YES

The query

?- reduce(2 + 3 * b, _x).

fails, since the form of the first argument does not unify with the
first argument of the head of the clause reduce. In general,
clauses simply fail if they are called with inappropriate
arguments, rather than causing errors as frequently happens in
conventional languages.

It is important to note that the two direct effects of a call are the
instantiations, which are caused by the unification with a clause
head; and the goal reduction step, which defines the next goal.
With respect to variable instantiations, any sequence of calls is
equivalent to some sequence of unifications with terms from the
clause heads.

Backtracking

If the head of more than one clause in a predicate matches a
question, then each of these possibilities must be tried. Such a
predicate is called nondeterministic, since more than one clause
may succeed. This name is misleading since it suggests
something random, which is not the case at all.

At a point where more than one possible choice exists, known as
a choicepoint, the system chooses one possibility and pursues it to
either success or failure. In the latter case, the system comes
back to the choicepoint, resets all variable bindings to their
values before any choice, and pursues another alternative. This
strategy is called backtracking.

BNR Prolog User Guide

Chapter 5 Pure Protog 41

Although the choice of alternative could be arbitrary, sequential
Prologs choose according to the order in which the clauses are
stored in the knowledge base. Thus, the programmer has
explicit control of the search order. This order can always be
ascertained by using the listing predicate.

When the predicate reduce is extended by the following clauses

reduce(A * B - A * _c, A * (_B - _C)).

reduce (A - _A, 0) •

reduce(A I _A, 1) .
reduce (A + o, _A).

reduce (A * 1, _A).

reduce (A I 1, _A).

reduce (A * o, 0).

backtracking is demonstrated by the following queries and their
results:

?- reduce(2 * 3 - 2 * 3, _X).
?- reduce (((2 * 3) - (2 * 3)) , (2 * (3 - 3)))

?- reduce (((2 * 3) - (2 * 3)) , 0)

YES

?- reduce(2 * 3 - 2 * 4, _X).
?- reduce (((2 * 3) - (2 * 4)) , (2 * (3 - 4)))

YES

?- reduce(_X, _Y).

?- reduce(((_A * _B) + (_A * _C)), (_A * (_B + _C)))
?- reduce(((_A * _B) - (_A * _C)), (_A * (_B - _C)))
?- reduce ((_A - _A), 0)

YES

BNR Prolog User Guide

42 Part II Prolog, a Logic Programming Language

member

The three most basic elements of pure Prolog, unification, call,
and backtracking are evident in the commonly used predicate
member. The definition of member expresses the idea of a term
being an element of a list. (Note the use of "bar" notation as an
alternative input form.)

member(_X, [_X _Ys]).
member(_X, [_Y I _Ys]) :- member(_X, _Ys).

A declarative paraphrase of the definition is

Xis a member of a list
if Xis the first element of the list
or if Xis a member of the rest of the list.

Note the results of the following queries, and the order in which
the solutions appear:

?- member (a, []) .
NO

% fails

?- member (a, [a, b, c]) . % finds one
?- member (a, [a, b, c]) .

YES

?- member (a, [a, b, a, c]) . % finds two
?- member (a, [a, b, a, cJ) .
?- member (a, [a, b, a, cJ) .

YES

?- member(_X, [a, b,J). % enumerates all
?- member (a, [a, bJ) .
?- member (b, [a, b, J) .

YES

?- member(w, [_A, b, c, _DJ). % updates list
?- member (w, [w, b, c, _DJ) .
?- member (w, [_A, b, c, wJ) .

YES

BNR Prolog User Guide

?- member(_X, [_A, _BJ).
?- member(_X, [_X, _B]).
?- member{_X, [_A, _X]).

YES

?- member (a, [_x, _Xs ..]).
?- member(a, [a, _XS ..]).

Chapter 5 Pure Prolog 43

% enumerates and
% updates

% generates
% indefinite list

?- member(a, [_x, a, _Ys ..]).
?- member{a, [_x, _Y, a, Ys ..]) . -
?- member{a, [_x, _Y, y 1, a, _Ys ..]).

?- member (_x ..) . % universal question
?- member{ X, [_x, Ys ..]). - -
?- member(_x, [_Y, _x, _Ys ..]).
?- member{ X, [_Y, y 1, _x, _Ys ..]). -

The last two queries have an infinite number of answers, only a
few of which are shown in each case. Note that every other
member question is a special case of the universal question posed
in the last query. The predicate member, used frequently in
applications involving lists, is also a useful model for writing
more complex list processing predicates.

Recursion

Recursion, that is having a predicate call itself directly or
indirectly, is one of the most important features of list
processing. For example, in the predicate member if x unifies
with the first element in the list, it is definitely a member of the
list, and the predicate succeeds. However, if the first clause does
not succeed, then x, does not unify with Y, so x and the
remainder of the IIst, Ys, are passed to member in a recursive
call. Reversing the order of these clauses has the following
effect:

- It functions the same as member with the exception of the
nonterminating case, but the answers are produced in
reverse order.

BNR Prolog User Guide

44 Part II Prolog, a Logic Programming Language

- The operation is more expensive since all the sublists are
generated before any testing is done. The last case is the
same as the worst case of the original member .

One of the most important points to remember when using
recursion is that you must have a terminating condition. In the
predicate member, the terminating condition is related to the ever
decreasing size of the list that is being passed as an argument in
the recursive calls. Eventually the list will be empty, but an
empty list does not unify with either of the clauses in the
predicate. Thus, the exhaustion of the list forces the predicate to
terminate.

append

Another classic Prolog predicate is append, which expresses the
idea of a third list being the concatenation of the first two:

append([], [_rest ..], [_rest..]).
append([_X, _Xs ..], [_rest ..], [_X, _rest2 ..])

append(_Xs, _rest, _rest2).

Note that because of tail variable coercion the second clause is
represented internally as:

append ([_X, _Xs ..], [rest ..], [_X, rest2 ..])
append([_Xs ..], [rest ..], [rest2 ..]).

The declarative paraphrase of append is:

appending the empty list to any list A gives A

appending list A to list B yields list C, where the
first element of C is the first element of A, and the
rest of C is the result of appending B to the rest
of A.

Some examples are:

% fails, 'Fred' is not a list
?- append([l, 'Fred', _X).
NO

BNR Prolog User Guide

Chapter 5 Pure Prolog 45

% base clause
?- append([], [2, 3), _X).

?- append([], [2, 3), [2, 3)).
YES

% concatenation
?- append([1, 2), [3], _X).

?- append([1, 2), [3], [1, 2, 3)).
YES

% prefix decomposition
?- append([_A, _BJ, _x, [1, 2, 3)).

?- append([1, 2), [3], [1, 2, 3)).
YES

% nondeterministic decomposition
?- append(_X, _Y, [a, b]).

?- append([], [a, b], [a, b]).
?- append([a], [b], [a, b]).
?- append ([a, b J , [J , [a, b]) .

YES

% appending to an indefinite list
?-append ([a], [_Y ..], _Z) .

?- append([a], [_Y ..], [a, _Y ..]).
YES

% appending to an indefinite list
?- append ([a, _x ..] , [b], _Z) .

?- append([a], [b], [a, b]).
?- append([a, _X], [b], [a, _x, b]).
?- append ([a, _x, _X_l], [b], [a, _x, _X_l, b]) .

% universal question
?- append(_X ..).

?- append([], [_rest ..], [_rest ..])
?- append([_X], [_rest ..], [_X, _rest..]).
?- append([_X, _X_l], [_rest ..], [_X, _X_l, _rest ..]).

BNR Prolog User Guide

46 Part II Prolog, a Logic Programming Language

Consider the following mutation of append, formed by
rearranging the arguments slightly:

rev_append([], [_X ..], [_X ..]).
rev_append([_X, _Xs ..], [_Y ..], [Zs ..]) .

rev_append(_Xs, [_X, _Y ..], _Zs).

?- rev_append([_A, _BJ, _X, (1, 2, 3, 4)).
?- rev_append((2, 1), (3, 4), (1, 2, 3, 4)).

YES

?- rev_append((1, 2), (3, 4), _X).
?- rev_append([l, 2), [3,"-4), (2, 1, 3, 4)).

YES

Repeating some of the queries to append, makes the effect of the
change apparent. If the second list is empty, the effect is that of
another common Prolog predicate, reverse.

Ordering of Clauses

The order of clauses in pure Prolog does not affect the declarative
meaning of a predicate, but may have profound consequences on
its behavior. Some clause orders may not terminate properly, or
may be very inefficient when compared with other equivalent
orders. For example, it is usually better to put the termination
clause first as in

append([], [_X ..], [_X .. J).

To illustrate ordering of clauses, backtracking and calling a
variable, consider the definition of OR (predefined by the system).
The operator "; " is defined as infix, and the meaning of the
operation is defined as

(_P _Q) P.

(_P _Q) • _Q.

BNR Prolog User Guide

Chapter 5 Pure Prolog 47

The arguments to 11
;

11 must be executable terms. For example,
successive instantiation of_ x occurs in the following:

?- member {_X, [a, b, c]) ; member {_X, [d, e, f]) .

?- { [{member {a, [a, b, c]) member {a, [d, e, f]))]) .

?- { [{member {b, [a, b, c]) ; member {b, [d, e, f]))]) .

Conjunction

The idea of and then is expressed using list notation. For
example,

?- P, Q, R.

can be read as

P and then Q and then R

In the pure Prolog subset, however, the order of operations does
not affect the meaning of the answer, that is, [P, Q] means the
same as [Q, P] • This allows us to drop then, treating the
comma as and. This is illustrated by the following queries:

?- _x = a, reduce{_X * b + _x * c, _Y).
?- [(a = a) , reduce ({ (a * b) + (a * c)) , {a * (b + c)))]

YES

?- reduce(_X * b + X * c, _Y), X = a.

?- [reduce (((a * b) + (a * c)) , (a * (b + c))) , (a = a)]

YES

BNR Prolog User Guide

48 Part II Prolog, a Logic Programming Language

Conjunction and Backtracking

A program using just conjunction and backtracking can be
written to simulate the behavior of a Boolean switching circuit,
such as is shown in the following figure.

_X1_X2 X3_X4

z1 z2

Circuit

The components of the circuit are nand gates. With the variables
representing wires, the definitions the circuit is described as
follows:

BNR Prolog User Guide

Chapter 5 Pure Prolog 49

% nand(_inputl, input2, _output)
nand (0, o, 1).
nand(0, 1, 1).
nand(l, o, 1).
nand(l, 1, 0) .

circuit ([_Xl, _X2, _X3, _X4], [_Yl,
nand(_Xl, _X2, zl),
nand(_X3, _X4, z2),
nand(zl, - z2, _Yl),
nand(_X4, - z2, _z3),
nand(_Yl, - z3, _Y2).

The results of queries would be similar to:

?- circuit([0, 1, 0, 1], [_t, _u]).
?- circuit ([0, 1, 0, 1], [0, 1]).

YES

_Y2]) ·-

?- circuit ([a, _b, c, _d], [1, 0]). - -
?- circuit ([0, o, 1, 1 l , [1, 0 l) .
?- circuit ([0, 1, 1, 1 l , [1, 0 l) .
?- circuit ([1, o, 1, 1 l , [1, o l) .
?- circuit ([1, 1, o, 0 l , [1, 0 l) .
?- circuit ([1, 1, 1, 0 l , [1, 0 l) .
?- circuit ([1, 1, 1, 1 l , [1, 0 l) .

YES

?- circuit ([0, _b, o, _dl, [_t, 1 l) .
?- circuit ([0, o, o, 0 l , [0, 1 l) .
?- circuit ([0, o, o, 1 l , [0, 1 l) .
?- circuit ([0, 1, 0, o l , [0, 1 l) .
?- circuit ([0, 1, 0, 1 l , [0, 1 l) .

YES

BNR Prolog User Guide

50 Part II Prolog, a Logic Programming Language

Conjunction and Recursion

An example of conjunction and recursion together starts with a
modified version of member called choose (a recursive predicate).
This is used in a conjunction in another recursive predicate,
permutation:

choose (_X, [_X, _Ys ..], [_Ys ..]) .
choose(_X, [_Y, _Ys ..], [_Y, _Zs ..])

choose(_X, [_Ys ..], [_Zs ..]).

permutation ([], []) .
permutation(_List, [_X, _Rest ..])

choose(_X, _List, _Xs),
permutation(_Xs, _Rest).

Example queries are:

?- choose (_X, [a, b, c, d], _List).

?- permutation([a, b, c, d], _X).

A call to choose nondeterministically instantiates a member of
[a, b, c, d] to x, and List becomes [a, b, c, d] with the
chosen item deleted. A calT to permutation generates all twenty
four permutations of the list [a, b, c, d] .

Ordering of Subgoals

Although the meaning does not depend on the order, the order of
subgoals should also be considered carefully because of
termination and efficiency issues. There are instances where
[P, Q] does not terminate, but [Q, P] does, as can be seen in
the following:

?- member(_X, _Y), _Y = [a, b, c].
?- [member (a, [a, b, c]), ([a, b, c]
?- [member (b, [a, b, c]), ([a, b, c]
?- [member (c, [a, b, c]), ([a, b, c]

<Error> 5 Global stack full

BNR Prolog User Guide

[a, b, c])].

[a, b, c])] .

[a, b, c])].

Chapter 5 Pure Prolog 51

?- [_Y = [a, b, c], member(_X, _Y)].
?- [([a, b, c] [a, b, cl), rrerrber (a, [a, b, c])] .
?- [([a, b, c] [a, b, c]), rrerrber (b, [a, b, c])] .
?- [([a, b, c] [a, b, c]), rrerrber (c, [a, b, c])] .

YES

Putting It Together

Prolog encourages the construction of simple, but very general
definitions, and then combining them to achieve the desired
effect. Building on the example reduce (see "Call" in this
chapter) illustrates this. Note that some obvious rules for the
reduction of arithmetic expressions are missing, for example

reduce(l * _A, _A).

Although this rule could be added directly to the knowledge base,
it is a consequence of rules already existing and the law of
commutativity for"*". Therefore, a general rule, reduce sym,
can be written that switches the arguments of a commutative
operation in order to get a reduction. Since "+" is also a
commutative operation, it will also be covered.

reduce_sym(_X, _Y) :- reduce(X, _Y).
reduce_sym(_F(_Xl, _X2), _Y)

commutative(_F),
reduce(_F(_X2, _Xl), _Y).

commutative(+).
commutative(*).

The predicate reduce sym makes use of the variable functor
notation F (x, Y) 1n its pattern matching. Note that a + b
is really'+' (a, b); the infix syntax only affects input and
output of terms, not their actual structure. Insuring that the
operation is commutative before calling reduce prevents a lot of
unnecessary work.

For a term like (a + 0) + 0, a first reduction step produces
(a + 0) , which can be further reduced. Reduction can be

BNR Prolog User Guide

52 Part II Prolog, a Logic Programming Language

continued as far as possible through recursion, as demonstrated
in the predicate reduces_to.

reduces_to(_expl, _expl).
reduces_to(_expl, _exp2) :-

reduce_sym(_expl, _X),
reduces_to(_X, _exp2).

?- reduces_to(a + 0 + o, _X).

?- reduces _to(((a + 0) + 0) , a) •

?- reduces _to (((a + 0) + 0) , (a + 0)).
?- reduces _to (((a + 0) + 0) , ((a + 0) + 0)).

YES

Terms like (a * 1 - 1 * a) still cannot be reduced without
first reducing the arguments. It is necessary therefore to reduce
each argument first, starting with the simplest terms. This can
be generalized by making the reduction rule an argument, as
demonstrated in the predicate transform that follows. Variables
represent functors both in the pattern matching and as a call in
the rule body. A valid predicate name must be substituted for
_ RuleName before the call, or an error occurs.

transform(_Op(_Left, _Right), _Result, _RuleName)
transform(_Left, _Leftl, _RuleName),
transform(_Right, _Rightl, _RuleName),
_RuleName(_Op(_Leftl,_Rightl), _Result).

transform(_Op, _Result, RuleName)
_RuleName(_Op, _Result).

The following example specifies the operator"==>" as infix, with
weak precedence, and also the definition of the related operation.
The details of specification of operator syntax and precedence are
covered in chapter Operators. Note that the rule reduces to is
passed as an argument in the call to transform. Reduction of
some simple arithmetic expressions is demonstrated.

op(l000, xfx, '==>').
X ==> Y ·- transform(_X, _Y, reduces_to).

BNR Prolog User Guide

Chapter 5 Pure Prolog 53

?- a* 0 - 0 *a==> X.
(((a * 0) - (0 * a)) ==> ((a * 0) - (0 * a))) .
(((a * 0) - (0 * a)) ==> ((a * 0) - 0)) •

?- a* 1 - 1 *a==> X.
(((a * 1) - (1 * a)) ==> ((a * 1) - (1 * a))) .
(((a * 1) - (1 * a)) ==> ((a * 1) - a))

?- (a* 1 + b * 0) / (1 / 1 + (a - a)) ==> _x.
((((a * 1) + (b * 0)) / ((1 / 1) + (a - a))) ->

(((a * 1) + (b * 0)) / ((1 / 1) + (a - a)))) .
((((a* 1) + (b * 0)) / ((1 / 1) + (a - a))) >

(((a * 1) + (b * 0)) / ((1 / 1) + 0))) .

Although this still is not a complete program for simplification of
arithmetic expressions, it can do some reductions that are quite
complex. (Those with backgrounds in other languages might
consider how they would implement this algorithm in their
favorite conventional language, and how they would convince
themselves that it was implemented correctly.)

Characteristics of Pure Prolog Programs

In this chapter the pure Prolog subset has been described as the
language generated by nondeterministic calls and conjunction.
It was mentioned that the pure subset can also be described by its
connection to Horn clause logic. In addition, it can be described
in terms of certain formal properties. The differences between
the three descriptions are of particular interest.

Prolog, as described above, differs from Horn clause logic in
three basic respects. First, the language of classical logic is
limited to finite terms. Unification, in the classical sense,
therefore should not produce cyclic structures. However, Prolog
implementations have usually omitted the check ("occurs
check") required to detect cycle formation because of its

BNR Prolog User Guide

54 Part II Prolog, a Logic Programming Language

inefficiency. Many Prolog systems generate unpredictable
errors when handling cyclic structures.

BNR Prolog belongs to a family of Prolog systems (which
includes Prolog-11) which not only permits cyclic structure
formation, but correctly handles unifications and other
operations involving cyclic structures. Languages in this family
are not, in fact, based on classical Horn clause logic at all, but
have other semantic models which allow more general data
structures. Since the majority of computations do not involve
cyclic structures, they can still be viewed as if they were in Horn
clause logic.

The second basic difference from Horn clause logic is due to the
depth-first search strategy used in Prolog. If a search tree is
infinite, as is frequently the case, Prolog pursues an infinite
branch until memory is exhausted, never reaching other
branches which possibly contain solutions. In such cases,
Prolog is incomplete while the classical theoretical model is not.
Therefore, Prolog programs derived from the classical model
contain the implied condition that the program terminates
without error. In fact, nontermination is not uncommon, and
dealing with it is an important part of Prolog programming.

The third difference is the use of features that do not exist in
Horn clause logic such as variable functors, tail variables with
structures, and "metacalls" as used in the predicate OR. These
features permit the finite encoding of what would otherwise
require an infinite set of rules.

Formal Properties of Pure Prolog

In order to introduce the formal properties of pure Prolog,
consider an arbitrary query or call p (X) where p is any
predicate that is free of side effects, and x stands for the entire
argument list. If the call succeeds, the answer, denoted by
p (X1), is generally different from the call because of variable
instantiations. The first formal property, narrowing, is
universal and was mentioned in the chapter "The Prolog Model".

BNR Prolog User Guide

Chapter 5 Pure Prolog 55

Narrowing: the answer X1 is narrower than the initial x The
failure of p (X) is regarded as having the "empty"
answer, which is narrower than anything.

To discuss the remaining properties that hold for pure Prolog
programs, that is the monotone,persistent, and idempotent
properties, it is useful to take another look at unification.

Recall that unification was introduced previously as an
equivalence relation. A different interpretation, described in
mathematical notation, is useful for analyzing formal
properties. Let each term T be represented by the set { T}
consisting of all the ground terms produced by instantiating the
variables in T in all possible ways. If T contains no variables
at all, then this set consists of T alone. Thus, if T is the term
[a, a] , then the set { [a, a] } is the set { T } . If T is the term
[x, a] , then { T } represents a set that includes all [X, a]
With all instantiations of the variable x. One member of this set
would be [a, a].

Unifying two terms x and Y instantiates both to the same term,
where the resulting set of terms is the intersection of the sets
{ x} and { Y}. The re/7,exive, symmetric, and transitive laws of
equivalence correspond respectively to the idempotent,
commutative, and associative laws of set intersection. The
concept of x being narrower than Y can then be expressed
formally as { x} is a subset of { Y } •

Since this explanation of unification involves sets of ground
terms rather than single terms, it is called a second-order
interpretation. With this second-order interpretation, it is easy to
see that if the term T is fixed, then the effect of x = T is to
restrict x to correspond to the intersection of { x} and { T}.
(The effects of unification with a fixed term is particularly
important because calling a predicate involves unifying the
question with a clause head.)

If z denotes an arbitrary term before unification with T, the
same term after unification is denoted by z 1 .

BNR Prolog User Guide

56 Part II Prolog, a Logic Programming Language

monotone: if x is narrower than Y before
unifu:ation then xi is narrower than yi after.

l1onotone

persistent: if Y is narrower than xi, then Y is the same as Yl,
since Y is already within the intersection.

X

The persistent property essentially reflects the fact that logic
variables, once instantiated, do not change until failure occurs.
As a consequence, many operations, for example unification
with a fixed term, have the property of not being disturbed by
subsequent narrowing. The idempotent property is an important
special case of persistence.

idempotent: xii is the same as xi.

BNR Prolog User Guide

Chapter 5 Pure Prolog 57

Since unification has all of these formal properties, each call and
each sequence of calls also has them. It therefore follows that
any pure predicate, composed of nondeterministic calls and
conjunctions, has these properties along every terminating
branch. A predicate is monotone if narrowing the question
narrows the answer, and it is persistent if a call that is
syntactically identical to a previous call in the same goal
sequence is always redundant. This is sufficient to prove that
pure predicates commute, that is P, Q is the same as Q, P
whenever both expressions terminate. (This is necessary if ", "
is to be interpreted as "and".)

Any program that satisfies the monotone and persistent
properties may, in principle, be written as a pure program.
More practically, behaviorally pure programs can be written
using "impure" constructs, and can be much more efficient than
constructively pure ones. From a theoretical viewpoint, there
are advantages in defining pure Prolog in terms of these
behavioral properties rather than in terms of how they are
constructed.

Because these formal properties refer only to the relationships
between various questions and answers on terminating
branches of the computation, they have nothing to do with
completeness issues. Therefore, infinite branches of the
computation can be pruned without invalidating these properties
for the remaining branches. This is important in practical
programs where it is frequently necessary to sacrifice
completeness to ensure termination by using the nonlogical
techniques discussed in the next few chapters.

BNR Prolog User Guide

Chapter 6 Filters and Negation 59

Chapter 6
Filters and Negation

To exercise control over a Prolog computation, it is often
necessary to examine data structures without affecting them.
Since unification may instantiate as well as test, it alone is not
sufficient to perform these examinations. Those predicates
which have no side effects and do not instantiate are called
filters. Filters influence the computation solely by succeeding or
failing. Two of the simplest filters are true which always
succeeds; and fail which always fails, resulting in
backtracking.

BNR Prolog User Guide

60 Part II Prolog, a Logic Programming Language

Several of the general properties of filters follow directly from
these definitions:

- the disjunction of filters is a filter

- the conjunction of filters is a filter

-filters commute with each other, thus [fl, f2] is the same
as [f2, fl]

- filters are idempotent, thus [f, f] is the same as f

Many filters fall into one of the two classes, persistent or
monotone. Recall that the persistent property implies that a
predicate "remains true". Thus, a later call to the same filter is
redundant in any sequence of successful calls. For filters, the
monotone property has the opposite significance. If a monotone
filter is true at some point in a sequence, then it must have been
true at previous points in the sequence as well.

In general, filters do not commute with unifications. More
specifically, for each unification there is some filter with which it
does not commute. Those filters which are both monotone and
persistent do commute with unification, and thus are part of the
pure Prolog subset and may be read declaratively.

The lack of commutative property between filters and unification
may not seem significant in a small example. However, any
procedures using such filters (or primitives requiring
instantiated arguments) also do not commute with unifications.
Such procedures lose the properties of pure Prolog, and therefore
can only be understood procedurally. In fact, this is one of the
major sources of "impurity" in Prolog.

One problem with such non-commutativity of primitives is that if
they are used too soon (before instantiation) one risks rejecting
what might be a valid answer. Deferring such tests until all
critical instantiations are done (using the "generate and test"
paradigm), helps to avoid this problem. However, it is generally

BNR Prolog User Guide

Chapter 6 FIiters and Negation 61

very inefficient since the test is frequently far from the decision
point.

Monotone Filters

There are only three primitive monotone non-persistent filters,
var, tail var, and acyclic. The filter var, for example,
succeeds if and only if all its arguments are uninstantiated
variables. var does not commute with unifications, as seen in
the following table

Succeed Fail

var(_x) var(7)
var(_xl, - x2, _Month) var(2, _X)

var(_x), X = 2 X = 2, var(_x)

Monotone filters can be created by combining other monotone
filters using conjunction and disjunction.

Combinations of monotone filters and pure prolog are neither
filters since they may instantiate, nor pure since they are not
persistent. Thus, the declarative interpretation of the program
is adversely affected. For example, using the clause

f(_X) :- var(_X), X = 2.

f (X) succeeds, but [f (X) , f (X) J fails. This violates the
idempotent nature of both-filters and pure Prolog.

Persistent Filters

Most primitive filters are persistent but not monotone. The
typical persistent filter, nonvar, is true just when all its
arguments are instantiated. non var, like var, does not
commute with unifications. In the following, the first query fails
because x is an uninstantiated variable at the time tested, but
the second succeeds because x is instantiated before it is
tested:

BNR Prolog User Guide

62 Part II Prolog, a Logic Programming Language

?- nonvar(_X), X = 2.
?- _X = 2, nonvar(_X).

% fails
% succeeds

Each of the basic types in the language has its own primitive
filter:

bucket
float
integer
interval
list
structure
symbol

All have analogous definitions and are mutually orthogonal.

Note the following examples:

Succeed

integer(l)
float (1. 0)

symbol ('Fred')
structure(fred[J)
list([])
non var (_x + 2)

BNR Prolog User Guide

Fail

integer(l.O)
float(l)
structure ('Fred')
symbol (fred [])
symbol ([])
ground(_x + 2)

Chapter 6 Filters and Negation 63

The persistent filter, ground, in the last example, is true only
when its argument is a term containing no uninstantiated
variables or tail variables.

Persistent filters can be created by combining other persistent
filters using conjunction and disjunction. Combinations of
persistent filters and pure prolog are also persistent. For
example, the expressions

_x =a+ _b, integer(_b)
nonvar(_x), list(_list), rnember(_x, _list)

are persistent. Although they are idempotent, they are not
monotone, therefore not pure; they may instantiate, and thus are
not filters.

To illustrate the application of filters, consider again the reduce
example in the previous chapter. One of its most undesirable
properties is the non-terminating behavior of x ==> Y when

x contains variables. One way to curb this exuberance is to use
ground (X) as a filter in the definition for"==>". X ==> Y
then fails rather than causing a stack overflow. The result IB a
persistent, but not monotone, predicate.

A less drastic fix is to change reduce_ sym to use a non var test:

reduce_syrn(_X, _Y) :- nonvar(_X), reduce(_X, _Y).

reduce_syrn(_f(_Xl, _X2), _Y) ·-
nonvar (_X),
cornrnutative(_f),
reduce(_f(_X2, _Xl), _Y).

This cuts out the non-terminating branches without actually
prohibiting variables. The resulting 11==> 11 is also persistent, but
not monotone.

Some filters are both monotone and persistent, and thus can be
considered part of pure Prolog. These include true, fail, and
all executable ground terms. They are discussed in the chapter
"Passive Constraints".

BNR Prolog User Guide

64 Part II Prolog, a Logic Programming Language

Constructed Filters

Filters are traditionally considered to be non-logical because they
do not generate their solutions (that is, they are non
constructive), and they do not commute with unifications. For
example, [integer (X) , X = 2] is not the same as
[_X = 2, integer[_x)] 1f _xis initially uninstantiated.

There are four ways to create filters:

- combining other filters using conjunction and disjunction

- discarding the results of unifications

- using the predicate not

- grounding terms, as described in the chapter "Passive
Constrain ts"

Combining FIiters

As noted before, filters that are monotone can be created from
monotone filters, and filters that are persistent can be created
from persistent filters. There are filters which are neither
monotone nor persistent. One way to form them is to combine
monotone and persistent predicates. The filter weird is an
example:

BNR Prolog User Guide

Chapter 6 FIiters and Negation 65

weird(_X + _Y) :- integer(_X), var(_Y).

?- weird(u + _v). % fails

?- weird(2 + _v). % succeeds
?- weird((2 + _v)).

?- weird(2 + 3). % fails

Such filters cannot usually be given a declarative interpretation.

A set of primitives which fall into this class are the term
comparisons:

X @= y X @\= y

X @< y X @> y

X @=< y X @>= y

These comparisons are frequently used in sorting lists of
arbitrary terms. They can produce unpredictable results and
must be used with caution, however, unless the terms compared
are ground terms. The details of the comparisons and their
ordering can be found in the BNR Prolog Reference Manual.

BNR Prolog User Guide

66 Part II Prolog, a Logic Programming Language

Discarding Results

There are other ways to form filters besides combining primitive
filters. From the viewpoint of the caller, if calling a predicate
does not appear to instantiate any arguments passed to it, then
that predicate is a filter. To accomplish this, the results of any
unifications inside the predicate must be discarded.

Consider the problem of creating a filter that tests if a list is
indefinite. The built-in predicate termlength (not a filter), takes
a list (or structure) as the first argument, and returns the actual
length, and either" [J" if the list is definite, or its terminating
sublist if indefinite. An example is

?- termlength ([a, b, c ..], _n, _t) .
?- termlength([a, b, _c ..], 2, [_c ..]).

Note that termlength is not a filter, since n and t are
instantiated. However, by discarding the results of these
unifications, an indefinite list filter can be formulated as follows:

indefinite(_list) :-
termlength (_list, _n, [_x ..]),

tail var (_x ..) .

Negation by Failure

Negation by failure is the most common mechanism for building
complex filters. The expression

not(P)

where P is some goal, succeeds if P fails and fails if P
succeeds. A declarative reading is "p is not provable" which is
not the same as "(not P) is true". (There has been much
confusion over not, because in first-order predicate calculus
not (P) means "(not P) is true".)

Provided P has no side effects, not (P) is a deterministic filter
since all instantiations by P are undone by backtracking. If P
is monotone, then not (P) is persistent. For example,

BNR Prolog User Guide

Chapter 6 FIiters and Negation 67

not (var (x)) is persistent since var (x) is monotone.
Similarly, negations of persistent predicates, such as
not (non var (_X, _Y)), are monotone. Negations of pure
predicates are both persistent and monotone.

not satisfies some of the formal requirements of the classical
negation, such as:

not (P) , P fails
P, not (P) fails provided Pis idempotent
not (P), not (Q) is the same as not (P Q), where P and Q
are executable goals

However, unless P is a filter:

not ([P, Q])
P; not(P)

is not always the same as not (P) ; not (Q)
is not always the same as true

If we define

pos(P) :- not(not(P)).

then pos (P) has the declarative meaning "pis possible", that
is, it would succeed if called, where

not (pos (P)) is the same as pos (not (P))
pos (P) , not (P) always fails (either order)
not ([not (P), not (Q)]) is the same as pos (P) ; pos (Q)
pos (P) ; not (P) is the same as true

Note that pos (P) is not the same as P unless P is a
deterministic filter. It follows that if the multiplicity of solutions
is neglected, filters form a Boolean algebra: and, or, and not with
all their usual properties. not and pos map all of Prolog to the
subset of filters.

In summary, filters are predicates that never instantiate
variables. In general they are not part of pure Prolog because
they do not commute with all unifications. Filters make it
possible to determine the instantion state of term, thus allowing
for actions to vary according to what is or is not instantiated. A

BNR Prolog User Guide

68 Part II Prolog, a Logic Programming Language

basic set of primitive filters is provided by the system. Additional
filters can be constructed by combining existing filters with
logical connectives, by discarding the results of unification, and
by using the not metapredicate (which makes any predicate into
a filter).

Filters commute with each other and form a Boolean algebra
under suitably chosen logical operations. Monotone and
persistent filters are important subclasses of filters, since they
have different characteristics and uses. Filters which are both
monotone and persistent are also pure predicates, and therefore
commute with all other pure predicates. One way to form such
special filters is by the passive constraint mechanism, the
subject of the next chapter.

BNR Prolog User Guide

Chapter 7 Passive Constraints 69

Chapter 7
Passive Constraints

There exists a group of filters which commute with all pure
programs. These filters are both monotone and persistent, and
form the class of predicates known as the center. Those
combinations that are created from central predicates using
conjunction, disjunction, and negation are also central.

In addition to true and fail, all ground terms belong to the
center. Just as the not construct maps any program into a filter,
the passive constraint construct maps any program into the
center. The use of constraints provides a simple and uniform
way to restore commutativity, and hence the declarative reading
of programs. It also radically changes the way in which one
formulates problems. The resulting code is not only logically
cleaner, but usually runs much faster (sometimes by orders of
magnitude).

BNR Prolog User Guide

70 Part II Prolog, a Logic Programming Language

Constraint Notation

Syntactically, constraints consist of a goal enclosed in braces,
11
{} ". Regarded as a data structure, a constraint is a just a

structure with name 11
{} ". Specifying more than one goal,

separated by commas,

{A, B, . . . }

is semantically equivalent to

{A}, {B}, ...

When a constraint { G} is executed, it imposes the constraint G
on the downstream execution; if there is backtracking across this
point the constraint is removed. Thus in the predicate
definitions:

R :- P, Q.

P :- A, B, {C}, D, E.

any constraints imposed by the execution of {C} are in force
during the subsequent execution of D and E. Furthermore, if P
succeeds and exports any constrained variables, then the
constraints will be in force during the execution of Q, and so on.

Constraints are classed as

- active constraints, which are of the form { P - > Q}

- data fiow constraints, which are of the form
{Xis Expression}

-passive constraints , which are all others

Active and data flow constraints have somewhat different
properties and uses, which are discussed in later chapters.

Passive constraints are all arbitrary constructs of the form { G}
where the goal G does not have either of the forms P -> Q or
X is Expression. They never act as generators, and are

BNR Prolog User Guide

Chapter 7 Passive Constraints 71

technically filters since they never cause instantiations (which is
why they are called passive).

The passive constraint { G} defers the execution of G until it is
ground. If and when G ever grounds, it will be interpolated into
the stream of executing goals. If G succeeds, the constraint is
satisfied and becomes dormant. If G fails, control backtracks
through any choicepoints of G to the alternatives of the action
that triggered G. Thus, the use of constraints ensures that tests
are performed immediately after an instantiating choice, and the
use of a backtracking strategy is more efficient. Because
dormant constraints become "reactivated" whenever
backtracking crosses their trigger instantiations, contraints
apply to all subsequent computations.

Declarative semantics

A passive constraint { P} has the formal declarative meaning of
ground (P) ~ P, where ~ is logical implication. In other
words, if P is not ground, then { P} is true; if P is ground,
then { P} is true only if P is true. This may be different from
the interpretation of other systems with otherwise similar
constraint implementations, which may take the meaning of
{P} to be equivalent to P. To understand the significance of this
distinction, consider a predicate h with some internal variable

X which is constrained as follows

h :- [{g(_X) }, ...] .

Suppose that h succeeds without ever instantiating x, which is
thus an irrelevant variable. After returning to the caller, x
would be inaccessible for instantiation (that is, x is not part of
the answer in any way). According to the conditional
interpretation, h is entitled to succeed; since_ x can never be
instantiated, the implication ground (g (X)) ~ g (X) is true.
However, with non-conditional interpretation, g (X) must be
executed, and if it fails then p must also fail. -

One consequence of conditional interpretation is that formally
inconsistent constraints on an irrelevant variable, for example,

BNR Prolog User Guide

72 Part II Prolog, a Logic Programming Language

{g (X), not (g (X))} become formally equivalent to
not (ground (g (X))), which is in accordance with the actual
behavior. (Note that the problem of formally inconsistent
constraints on irrelevant variables is a major problem for any
non-conditional interpretation.)

Constraint Interpolation

Interpolation of constraints into the stream of executing goals
occurs right after unification instantiates the last variable. This
usually corresponds to the ":-"in a clause definition. If several
constraints are triggered by the same unification, they are
processed in some unspecified order, as illustrated with the
example spyvar.

spyvar

Although passive constraints do not bind variables, they can
have side effects. Consider the following

spyvar(_Name, _Var):-
var(_Var), symbol(_Name), {disp(_Var, _Name)}.

disp(_Var, _Name) :- write(_Name: _Var), nl.
disp(_Var, _Name) :-

write(unbinding, ' ' _Name), nl, fail.

p (cat) .
p(dog).

In a query such as the following,

?- spyvar(fred, _fred), p(_fred).
(fred: cat)

?- [spyvar(fred, cat), p(cat)].
unbinding fred
(fred : dog)

?- [spyvar(fred, dog), p(dog])].
unbinding fred
YES

BNR Prolog User Guide

Chapter 7 Passive Constraints 73

Each time £red is instantiated, disp prints a message giving
the instantiation, and another message records each unbinding.
Some interesting variations on this technique can be used to
provide graphics interfaces for programs without directly
modifying their source. (See the queens8 file in the Demo folder
for an example.)

Generalized Types

One of the simplest uses of passive constraints is to provide
generalized "types". For example, { integer (X)} enforces a
type restriction on subsequent bindings to x, and can be
considered analogous to a type declaration-in languages like
Pascal. Apart from side effects, all passive constraints commute
with each other and with all pure Prolog programs. For
example,

{integer(_X) }, X = 2

is equivalent to

_x = 2, {integer(_X)}

Many common constraint constructs are formed from the basic
filters:

{ float (_X)}

{symbol(_X)}
{list (_X)}

{var (_X)}
{nonvar (_X)}

Note that {var (X)} prevents X from ever being instantiated,
while { nonvar (-X) } does nothmg at all semantically. One
particularly useful example uses a symbol restriction in
conjunction with variable functors, as in:

{symbol(_F)}, X = _F(_A ..).

This prevents F from ever being improperly instantiated to a
non-symbol.

BNR Prolog User Guide

74 Part II Prolog, a Logic Programming Language

Test and Generate

It is usually easy to transform the standard technique of
generate and test,

p :- generate(_X), test(_X).

into a constraint program of the form

pc :- testc(_X), generate(_X).

where testc is a constraint version of test.

Eight Queens Program

For example, the traditional Prolog solution to the eight queens
problem becomes

eight_qn ([_Xl, _X2, _X3, _X4, _XS, _X6, _X7, _X8])
once (qn ([_Xl, _X2, _X3, _X4, _XS, _X6, _X7, _X8])),
permutation ([1,

eight_qn() .

qn ([]) .

[_Xl,
2, 3, 4,

_X2, _X3,
5, 6, 7, 8] ,
_X4, _XS, _X6, _X7,

qn([_X, _Y ..]) :- safe(_X, _Y, 1), qn(_Y).

safe(_X, [),_Nb).
safe(_X, [_F, T ..], _Nb) :

{noattack(_X, _F, _Nb)},
NewNb is _Nb+ 1,

safe(_X, _T, _NewNb).

noattack(_X, _Y, _Nb) :-

_X8]).

(_Y <> _X), (_Y <> X - _Nb), (_Y <> X +_Nb).

permutation ([], [J) •

permutation(_Xs, [_Z, _Zs ..]) :-
choose(_Z, _Xs, _Ys), permutation(_Ys, _Zs).

In this program, the changes consist of using 11
{ }

11 on the
noattack predicate, and reversing the order of the calls in the

BNR Prolog User Guide

Chapter 7 Passive Constraints 75

mainline. The resulting code runs approximately five times
faster, due to the more efficient backtracking strategy made
possible by constraints.

Sound Negation and Negative Knowledge

Recall that not (P) means that P is not provable, rather than
that P is not true. Passive contraints provide a mechanism for
expressing some instances of the second concept. Consider

{not (P)}

where P is any goal. This has the effect of deferring the
evaluation of not (P) until P is ground, resulting in a Boolean
negation. This is sometimes called sound negation.

One elementary use of this construct is to eliminate exceptions.
For example,

{list(_X), not(_X = [])}.

eliminates the case of x being an empty list in all subsequent
computation. Another-important construct, sometimes called
di f, defined by

dif(_X, _Y) :- {not(_X = _Y)}.

ensures that x and Y are never fully instantiated to the
same values. This is our first example of a joint constraint. It is,
of course, easier to just write {_ X \ = _ Y}.

In general, the representation and use of negative knowledge in
Prolog applications has been difficult both conceptually and
technically. In most cases, the use of constrained negation is
found to provide the correct, as well as most elegant and
efficient, solution.

BNR Prolog User Guide

76 Part II Prolog, a Logic Programming Language

Dinner Party Program

To illustrate the use of constrained negation, consider the
description of a dinner party attended by four couples:

The following is information about four couples named
Smith, Jones, Brown, and White, and their comments
regarding a dinner party they attended. Their first
names are Joan, Mary, Alice, Kathy, Bob, Charles, John,
and Ron. What is each person's full name, and what did
that person say:

- Charles's wife did NOT say it was delicious.

- Mrs White said it was delicious.

- Joan did NOT say it was heavenly, and her husband did
NOT say it was boring

- Bob said it was boring, and he is not married to
Alice.

- Charles is NOT married to Kathy or Alice.

- Ron is NOT married to Alice.

- Mary Smith said it was fabulous.

- John said it was catered.

- Charles, whose last name is NOT Smith, said it was
tasteful.

- Mr Jones said it was fattening.

Mrs Jones did NOT say it was nouvelle cuisine.

BNR Prolog User Guide

Chapter 7 Passive Constraints 77

Using a conventional Prolog solution, the negative information is
checked last, after everything is ground:

/* list items contain title, first name, last name,
statement*/

dinner_partyl(_Info)
Info=

[['Mrs', , 'White', delicious],
['Mr', 'Bob', _LnameB, boring],
['Mr', , 'Jones', fattening],
['Mrs', 'Mary', 'Smith', fabulous],
['Mr', 'Charles', _LnameC, tasteful],
['Mr', 'John', , catered],
[_, , heavenly],
[, , 'nouvelle cuisine' J

l ,

% true list items
member (['Mrs',
member (['Mrs',
member (['Mrs' ,
member (['Mr',
member (['Mrs',
member (['Mrs',
member ([' Mr ' ,
member ([' Mr ' ,
member (['Mr',

'Joan', _LnameJ,], _Info),
'Alice', _LnameA, J, Info),
'Kathy', _LnameK,], _Info),

'Ron', _, l, _Info),
'Jones',], _Info),

, 'Brown', l , Info),
, 'Brown', l , Info),
, 'Smith', l , Info),
, 'White', l , Info), -

% untrue list items
not (member(['Mr', 'Charles', 'Smith', J, _Info)),
not (member (['Mrs', , 'Jones', 'nouvelle cuisine'] ,

_Info)),
not (member (['Mrs', 'Joan', _, heavenly], Info)),
not(member(['Mr', 'Ron', _LnameA,], _Info)),
not(member(['Mr', 'Charles', _LnameA,], _Info)),
not (member (['Mr' ,
not (member (['Mr',

'Charles', LnameK,
_LnameJ, boring],

], _Info)),
Info)),

not(member(['Mrs', _LnameC, delicious], Info)),
not(member(['Mrs', 'Alice', _LnameB,], _Info)).

BNR Prolog User Guide

78 Part II Prolog, a Logic Programming Language

/*
?- dinner_partyl{_X).
*/

A solution using sound negation would be

dinner_party2{_Info)
{_LnameC \= 'White',

LnameJ \= _LnameB,
LnameC \= _LnameK,
LnameR \= _LnameA,
NJones \= 'Jones'

_NJoan \= 'Joan',
LnameB \= _LnameA,
LnameC \= _LnameA,
LnameC \= 'Smith',

} ,

Info

['Mrs', , 'White', delicious],
['Mr', 'Bob', _LnameB, boring],
['Mr', , 'Jones', fattening],
['Mrs', 'Mary', 'Smith', fabulous],
['Mr', 'Charles', _LnameC, tasteful],
['Mr', 'John', _cat, catered],
[, _NJoan, , heavenly],
[, , _NJones, 'nouvelle cuisine']

l ,

% true list items
member (['Mr',
member { ['Mrs ' ,

, 'White' , l ,
'Joan' , _ LnameJ,

Info),
l , Info),

/*

member(['Mrs', 'Alice', LnameA,], _Info),
member{['Mr', 'Ron', _LnameR,], _Info),
member{['Mrs', 'Kathy', _LnameK, _], _Info),
member{['Mr', , 'Smith',], _Info),
member{['Mrs', , 'Jones',], _Info),
member{['Mrs', , 'Brown',], _Info),
member(['Mr', , 'Brown',], _Info)

?- dinner_party2(_X).
*/

BNR Prolog User Guide

Chapter 7 Passive Constraints 79

In more complex cases of this kind, the constraint solution is far
more efficient than traditional solutions, and also easier to
express.

In summary, passive constraints convert Prolog programs into
ones which are a monotone and persistent, thus making them
part of pure Prolog. This improves the declarative reading of
programs, and often significantly improves efficiency. Other
control mechanisms for making programs more efficient are
described in the next chapter.

BNR Prolog User Guide

Chapter 8 Control 81

Chapter 8
Control

As described in the chapter "Pure Prolog", programs that are
pure are frequently nonterminating due to uninstantiated
variables, or inefficient since questions containing
uninstantiated components may generate an infinite number of
answers. The chapter "Filters and Negation" covers the use of
filters to fail branches of a computation where the instantiation
state is insufficient for termination. The chapter "Passive
Constraints" discusses the use of deferred evaluation in hopes
that the instantiation state becomes sufficient for evaluation.
This chapter describes other methods of eliminating
nonterminating or unnecessary computation branches, as well
as methods of directing execution.

Eliminating Computation Branches

The basic primitive for eliminating branches of the search tree is
the cut primitive. The standard cut, written as "!",removes all
choicepoints created since the call of the parent goal. Generally,
the parent goal, the nearest up the call chain, is the goal that
calls the"!" primitive. Exceptions to this which are transparent
to the"!" operation are the or operator,";" and the conditional
if-then operator,"->" described later in this chapter. For
example, in

p :- [q, r, !, s, t].

p : - [u, v, w] •

execution of" ! " removes any choicepoints for q, r, and p, and
the second clause for p is never executed. The success of p
now depends solely on the outcome of s and t. The
computation is said to be committed to finishing the first clause.
Note that the frequently used sequence ! , fail causes the
parent goal to fail completely.

BNR Prolog User Guide

82 Part II Prolog, a Logic Programming Language

11 ! 11 has three formal properties:

- it makes its parent goal deterministic up to the point of the cut

- it is idempotent, that is ! , ! is the same as !

- it commutes with all successful deterministic predicates, that
is P, ! is equivalent to ! , P if and only if P is deterministic

The cut operation has some practical difficulties. Since it
discards a portion of the computation, using 11 ! 11 sacrifices
completeness unless the discarded branches either are known to
fail, or provide only redundant solutions. Furthermore, because
the use of cut requires careful procedural reading to determine
its precise semantic effects, programs employing it are much
harder to understand. In many cases, these negative effects can
be alleviated by using some of the higher level control constructs
described below.

In short, the semantics of 11 ! 11 depends on where it is executed
rather than where it is written in a predicate. As well, 11 ! 11

requires the creation of special cases. Otherwise, for example,
; ! would attempt to cut the or operation rather than the
previous goal.

Frequently it is desirable to cut a goal prior to the immediate
parent goal. To avoid the complications of restructuring code or
introducing cumbersome workarounds, an ancestral cut of the
form

cut(name)

is provided, where name is some ancestor goal. cut removes all
choicepoints back to and inclusive of the named goal. Because
ancestral cut explicitly specifies its target goal, it needs no
special cases and can be used with constructs such as foreach
and not without confusion. The predicate failexit (name) is
the same as cut (name), fail, and unconditionally fails the
named ancestral goal.

BNR Prolog User Guide

Chapter 8 Control 83

Because the action of 11 ! 11 depends on where it is executed, it is
very difficult to simulate with a Prolog meta-interpreter.
However, since the semantics of the ancestral cut are specified
explicitly and are independent of the point of execution. (It can
be used to simulate itself.)

A special predicate, block, which allows the naming of a
sequence of goals, provides a target goal for an ancestral cut used
within the block. A call to block executes all arguments except
the first, which is the block name. For example, in

a : - p, block (name, q, [r, s], cut (name), t) .

name is the specified block name, and cut (name) , if executed,
removes any choicepoints that exist in that block.

At the other extreme, 11 ! 11 sometimes cuts too much and one is
forced to introduce additional predicates merely to limit its scope.
For this class of problems, the list cut cuts back to the last
opening bracket, 11

[
11

• Recall that clause bodies are always lists
and have an implied set of brackets if none are written. Thus in

p : - [a, [b, cut], c, cut, e, f] .

p : - [h, i] .

the first cut determinizes b only, while the second removes
choice points for a and c but not for p itself. There is also a
list failexi t which is equivalent to cut, fail.

Directing Execution

once

The use of cut permits certain constructs to be defined that
cannot be coded within pure Prolog. The simplest of these is the
built-in predicate once, which is defined as

once(_P) :-_P, !.

and provides only the first solution for its argument goal.

BNR Prolog User Guide

84 Part II Prolog, a Logic Programming Language

If the objective is to obtain the first solution to a goal, and then
prevent backtracking, the most intuitive operation is once. For
example, the non-deterministic predicate member (defined in the
chapter "Pure Prolog") is inefficient if just used for checking for
membership, since it does not quit when the first occurrence of
an item is found. If this is the intended use, then replacing the
call with once (member (x, list)) is a reasonable
optimization. The purity of the member predicate is maintained,
and one less predicate is defined compared with making another
version of member that includes a cut.

if-then

Another common method of controlling the flow of execution is
the if condition then goal, "->", with an optional else goal, ";".
The if-then conditional operation is defined by

p -> _Q _P, I Q. . , -
p -> Q. -

and has the following general properties:

true -> Q is the same as Q

fail -> Q is the same as true

p -> fail is the same as not(P)

p -> true is the same as once(P ; true)

A natural extension of the if-then conditional, the if-then-else
construct is defined by

P -> _Q R [_P, ! , _Q] .
P -> _Q; R :- R.

Note that this syntax overloads the meaning of";", which is not
quite "or" in this case. This control construct is only
occasionally useful in Prolog, and the long cascades of
if-then-elses so characteristic of conventional languages should
be avoided.

BNR Prolog User Guide

Chapter 8 Control 85

Because the list separator, ",", has weaker precedence than any
of the operators, square brackets must be used to group goals in
a conditional expression. For example,

P :- Q -> R; S, T.

executes either R or s, and then T. If the else expression is
changed to

[S, T]

the predicate executes either R or S, T.

foreach

In many programming languages, one method of controlling the
path of execution is the iterative loop. Emulation of some such
loops is possible with the built-in predicate foreach. Rather
than looping on a counter, as is the case in many languages,
BNR Prolog loops on execution of what is known as the loop
generator.

The foreach construct is defined by

foreach(_P do _Q) :- _P, _Q, fail.

foreach(_P do _Q).

The generator is some nondeterministic goal, P, whose failure
ends the loop. As long as the generator continues to succeed,
foreach executes the goal Q within the loop's boundaries. For
example, in the following -

incomes(_Incomes) :-
write('Income earned: '), nl,
foreach(member([_Name, _X], _Incomes) do

[write (_Name, ': ', _X), nl]) .

foreach continues to test the incomes and display the names of
the wage earners in the family, as long as member succeeds.
Each loop finds the next alternative solution to member as result
of backtracking. Because backtracking undoes any variable

BNR Prolog User Guide

86 Part II Prolog, a Logic Programming Language

instantiations from previous solutions, no running counts can be
maintained within the foreach loop.

Often with iterative loops, there is a need to jump out of the loop if
a certain condition occurs. In the previous example, an exit
from the for each loop occurs only if member fails. Normally,
member only fails if the end of the list is reached, or an
inappropriate list structure is discovered. Failure can be forced
by using the built-in predicate failexit, which is described
under cut. In the previous example, the following sequence
would abort the foreach loop when a salary under 10000 was
generated.

[(_X >= 10000) ->

or

[write (_Name, ': ' _X), nl];
failexit(foreach)

Although disjunction has been discussed as part of the pure
Prolog subset, it merits some mention as a control construct,
since it has an impact on the path of execution in a program.
The or construct is defined by

(_P _Q) P.
(_P ; _Q) _Q.

When using the disjunction operator, ";",if the first option fails,
the second option, or branch, is attempted before backtracking
takes place. Note that the sequence

P, Q; R, S

is parsed as

P, (Q ; R), S

BNR Prolog User Guide

Chapter 8 Control 87

Program MAZE

The following program uses such control constructs as once,
not,"->",";", and cut to find a path through a maze. Each
position in the maze is represented by a number, and its
relationship to other positions is defined by the facts neighbor.

/* queries to turn display route on or off
?- assert(traceroute()). % enter to turn trace on
?- retract(traceroute()) .% enter to turn trace off

query to find a path through the Maze
?- traverse Maze.
*/

/* MAZE traverse Maze from start to finish, and
display the first route found*/

traverse Maze :-
once(route([start], _Path)), write(_Path), nl.

/* found the way out*/
route([finish, _Rest ..],[finish]) ·- cut(route).

/* find the route by trying a neighbor, if that path
eventually leads to a dead end, then backtrack and
try another neighbor.*/

route([_LastPosn, _Rest ..], [_LastPosn, _Path ..])
traceroute -> [write(r, [_LastPosn, _Rest]), nl],
adjoining(_NextPosn, _LastPosn),
not(member(_NextPosn, _Rest)), % avoid looping
route([_NextPosn, _LastPosn, _Rest ..], _Path).

adjoining(_X, _Y) :- % find two adjoining points
neighbor(_X, _Y) ; neighbor(_Y, _X).

/* check for membership in list*/
member(_X, [_X, _Y ..]) .
member(_X, [_Y, _Z ..]) member(_X, _Z).

BNR Prolog User Guide

88 Part II Prolog, a Logic Programming Language

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

5 27 28 29 30

31 33 34 35 36

TheMaze

/* Table of adjoining

/*vertical*/

neighbor(1, 7).
neighbor(7, 13).
neighbor(13, 19).
neighbor(l9, 25).
neighbor(25, 31).
neighbor(start, 2)
neighbor(8, 14).
neighbor(14, 20).
neighbor(20, 26).
neighbor(9, 15).
neighbor(15, 21).
neighbor(27, 33).
neighbor(33, finish).
neighbor(4, 10).
neighbor(l0, 16).
neighbor(16, 22).
neighbor(5, 11).
neighbor(ll, 17).
neighbor(17, 23).
neighbor(23, 29).
neighbor(6, 12).
neighbor(18, 24).
neighbor(24, 30).
neighbor(30, 36).

BNR Prolog User Guide

points in maze*/

/*horizontal*/

neighbor(19,
neighbor(31,
neighbor(2,
neighbor(8,
neighbor(26,
neighbor(3,
neighbor(21,
neighbor(27,
neighbor(28,
neighbor(34,
neighbor(ll,
neighbor(29,
neighbor(35,

20) .
32).
3).
9) •

27) .
4).

22) .
2 8) •
2 9) •
35) .
12) .
30) .
36) .

Chapter 8 Control 89

Active Constraints

Active constraints are conditional operations of the form

{condition-> goal}

where the declarative meaning is if and when condition is true,
then do goal. Formally, the semantics of active constraints are
defined by

{condition-> goal} .
condition->

goal;
first_var(condition, _Variable) ->

freeze(_Variable, {condition-> goal}).

where first var (condition, Variable) returns the first
variable founa in condition with a breadth-first scan.
freeze (V, G) succeeds while deferring the execution of G
until vis instantiated. Note that if condition becomes ground
without succeeding, then the constraint succeeds without
executing _G.

The status of condition is retested only when the variable
currently being monitored becomes instantiated. It is not
affected by instantiations of unmonitored variables. Thus, it is
difficult to know exactly when constraints on an arbitrary
condition are tried, and unwarranted assumptions about the
order or frequency of the tests should not be made.

Generally, conditions must be filters since they do no binding,
and they must be free of side effects and persistent for the
declarative reading to be accurate. Several categories of
standard predicates meet all the restrictions on conditions.

BNR Prolog User Guide

90 Part II Prolog, a Logic Programming Language

Among the most useful are the simple instantiation checks, for
example

{nonvar(_X, _Y) -> Q}
{integer(_I, _J, _K) -> Q}
{ground(_X) -> Q}
{acyclic(_X) -> Q}
{not(acyclic(_X)) -> fail}.

Note that a passive constraint, { P}, can be formally expressed as
{ground (P) -> P}. In the last example above,
not (acyclic (X)) could be used to trigger a warning message
or special actions if and when x becomes a cyclic structure.
Because constraint conditions may be executed many times, they
should also be efficient.

Another useful category of predicates, that meet the criteria for
conditional operations in active constraints, is that of arithmetic
comparisons. They execute their expressions whenever the
conditions become both ground and true, and succeed without
executing the consequent expression otherwise. For example,

{_Distance< 20 -> apply_brake}
{_Distance< 10 ->{_Speed> 60 -> pray}}

More complex use of active constraints is illustrated by
considering an extended example, which uses only the simplest
form of active constraint,

{nonvar (_X, _Y, . . .) -> Q}

where Q is executed if and when all the variables listed become
instantiated (not necessarily fully instantiated). Use of other
instantiation checks would be similar.

BNR Prolog User Guide

Chapter 8 Control 91

Functional Dependencies

A prime tool in the formal analysis of the structure of data bases
is the concept of functional dependency. In a relational data
base, a functional dependency

A=> B

is said to exist between subsets of the set of attributes ("field
names"), if the values of attributes in A determine those in B.
The set of attributes on the left of"=>" is sometimes called a "key"
to the set of attributes on the right. For example, an airline
database might have functional dependencies such as:

[flight_number] => [departure_time, capacity]
[depart_airport, arrival_airport] => [fare]
[flight_number, depart_airport] => [arrival_airport]

In database theory, it is important to be able to compute all the
functional dependencies derived from a given set of functional
dependencies. This is called closure. For example, consider the
following where "=>*" represents transitive closure:

[a] => [b, e, f, g]
[a, c, d, i] => [h]
[c, d] => [j]
[c, d, f] => [k]

[bl => [g]
[c, f] => [a, b, e]
[a, c] => [d]
[a, d] => [c]
[e, g] => [b]

BNR Prolog User Guide

92 Part II Prolog, a Logic Programming Language

An example of transitive closure is

[c, d, f] =>* [a, b, c, d, e, f, g, j, k]

where [c, d, f] gives c, d, f
[c, d, f] gives k
[c, d] gives j
[c, f] gives a, b, e
[a] gives b, e, f, g

Some other examples of transitive closure are

[a] =>* [a, b, e, f, g]
[b] =>* [b, g]
[c, d] =>* [c, d, j]
[a, c, d, i] =>* [a,b, c, d, e, f, g, h, i, j, k]

If there are N attributes then computing closure is equivalent to
computing a special kind of reachability relation in a graph of
2 * * N nodes. This general problem is significant partly
because of a number of special cases:

- If the left operand is always a single element list, and the
right operand is interpreted as neighboring elements in a
graph, then the closure is the reachability relation of the
graph.

- If the right operand is always a single element, and the left
operand is interpreted as "prerequisites", then the closure
computation provides a test for acyclic directed graphs. This
interpretation is useful in ordering data flow computations,
for example.

- If the items are interpreted as facts (with lists being
conjunctive) and the operator as "implies", then the closure
implements an inference procedure for the Horn clause
subset of propositional calculus (that is, a forward chaining
inference system for a simple implicative logic). The use of
active constraints for closure computations enables their
completion in times proportional to the length of actual

BNR Prolog User Guide

Chapter a Control 93

inference chains and independent of the total size of the
knowledge base. This technique is ideal for the very large, but
shallow, knowledge bases often encountered in traditional
expert systems.

Closure Program

A conventional Prolog program for computing closures with
respect to the above example, using an unordered list as its set
representation, and representing"=>" as"->", follows:

/* basic data */

closure(- In, _Out) .
[FdList

[

[al -> [e, f, g],
[a, c, d, il -> [hl,
[c, d] -> [j l ,
[c, d, fl -> [kl ,
[bl -> [gl,
[c, f] -> [a, b, el,
[a, cl -> [dl,
[a, dl -> [Cl ,
[e, gl -> [bl

l ,
clos (_FdList, - In, _Out)
l .

/* if generate basic function def'ns
then if I is subset of _In, and

_In,
add Oto _In,
then recurse,
else return In*/

Fds for I,
0 is subset of

BNR Prolog User Guide

94 Part II Prolog, a Logic Programming Language

clos(_Fds, _In, _Out) :-
[

member ((_I -> _O), _Fds),
subset(_I, _In),
not(subset(_O, _In)),
union(_O, _In, _Inl)

l ->
clos(_Fds, _Inl, _Out)
Out= In.

% if

% then
% else

/* subset(X, Y) where Xis a sublist of Y */

subset ([J , [l) .
subset([_X, _Xs ..], _Y) :-

member(_X, _Y), subset(_Xs, _Y).

/* union(X, Y, Z) where Z is concat of X, Y with
duplicates removed*/

union([], _x, _X).
union([_X, _Xs ..], _Y, Zs)

member(_X, _Y) ->
union(_Xs, _Y, _Zs) ;
union(_Xs, [_X, _Y ..], _Zs).

Using the conventional approach, a calling pattern to read a set
of subsets from a file and compute their closures is

initialize (. . .) ,
readsubsets(_S),
closure(_S, _S_closed),
writesubsets(_S_closed),
fail
l .

BNR Prolog User Guide

% generator
% compute closure
% output

Chapter 8 Control 95

The following is a solution to the same problem, based on active
constraints. The data structure used to represent subsets is a
collection of variables, where instantiated variables correspond
to a subset, and P => Q is simulated by {P -> Q}:

/* closed(_varlist, _corresponding_names) */

closed([_A, _B, _c, _D, _E, _F, _G, _H, _I, _J, _Kl,
[_a, _b, _c, _d, _e, _f, _g, _h, _i, j, _kl) .

{

nonvar(_A)
[_B, _E,

nonvar(_A,
nonvar(_C,
nonvar(_C,
nonvar(_B)
nonvar(_C,

[_A, _B,

nonvar(_A,
nonvar(_A,
nonvar(_E,

} .

->
F, - _c,
_D)
_D,
->
_F)

El -
_C)

_D)

_G)

Gl = [_b, e, f, - -
_D, I) -> H -
-> J

F) -> K -
G _g,

->
= [a, _b, _el, -

-> D

-> C

-> B

The constrained approach might be

initialize (. . .) ,

_gl,
h,

_j,
k, -

_d,
c, -
b

closed(_S_closed, _names), % constrain
readsubsets(_S), % generator

S = _S_closed, % compute closure
writesubsets(_S_closed), % output
fail
l .

S closed

The work of setting up the constraints can be done just once
"universally", and the closure computation is triggered by
unifying with the constrained to be closed object. Even for such a
small problem, the constraint version is ten to fifty times faster
(depending on the input data). On larger problems the difference
is generally greater.

BNR Prolog User Guide

96 Part II Prolog, a Logic Programming Language

The various flavors of cut provide mechanisms for pruning
unwanted (and possibly nonterminating) branches of the
solution tree, but are often difficult to understand. once and if
then, "->", package cut to make certain uses more
understandable. Other prepackaged control constraints include
or,";", and foreach. The final control construct is the active
constraint, which efficiently defers execution of the same goal
until a specified condition is satisfied.

BNR Prolog User Guide

Chapter 9 Operators 97

Chapter 9
Operators

Use of operators in Prolog provides a notational or syntactic
extension to the language. Without them, an arithmetic
expression like

2 + 3 * 4

would be written in the much less readable functorial form

'+'(2, '*'(3,4))

Operators can often be used to increase program readability.
Mathematical and logical operators in particular allow the
program to resemble, as much as possible, the original problem
formulation.

Using operators in expressions is only a convenience for reading
and writing, although the word operator suggests that some
operation or action is performed. Operators (except in a few
special cases) are only used as functors to combine objects into
structures, although the internal representation of expressions
containing operators is in functorial form. The execution
semantics of an operator, that is the operation, requires the
definition of a clause with the operator symbol as the principal
functor.

Syntactically, an arithmetic expression in which there are
operators is like any other structure. However, no arithmetic is
performed until execution of is or any of the arithmetic
comparison operators.

Operators are not restricted to arithmetic. Any symbol composed
completely of alphanumerics or completely of special characters
can be declared as an operator. For instance, if the symbols

BNR Prolog User Guide

98 Part II Prolog, a Logic Programming Language

photograph, eats and roars are operators, a program could
contain the facts

photograph elephants.
monkey eats banana.
lion roars.

% photograph(elephants).
% eats(monkey, banana).
% roars(lion).

An operator composed of special symbols does not need blanks to
separate it from its argument(s). Any other operator, for
instance one that looks like a word, does require blanks
separating it from its argument(s). Otherwise it would not be
possible to determine the division between operator and
argument. If there were no blanks in the first of the above
examples, the sequence of characters, photographelephants,
would be just one symbol.

Specifying an Operator

To declare a symbol as an operator, its position, precedence and
associativity must be specified. The positions in which an
operator may appear are prefix, infix or postfix. A prefix
operator such as photograph comes before its one argument.
An infix operator comes between its two arguments, for example
eats, and a postfix operator comes after its one argument, as
with roars.

An expression may be composed of several subexpressions.
Operator precedence is used to group subexpressions, thus
establishing the order of evaluation. Values for precedence are
integers in the range of O (low precedence) to 1200 (high
precedence). The subexpression having the operator with the
lowest precedence is evaluated first. Alternatively, the operator
with the highest precedence is the principal functor of the entire
expression. The expression 2 + 3 * 4 is grouped for
evaluation as 2 + (3 * 4) because"+" has higher precedence
than"*". Arithmetic conventions for evaluation order have been
preserved by the appropriate assignment of precedence for the
predefined arithmetic operators.

BNR Prolog User Guide

Chapter 9 Operators 99

A parenthesized expression has a precedence value of 0. Any
subexpression delimited by a set of parentheses is evaluated first.
An unstructured object also has precedence value O. If an
argument is a structure, then its precedence is the precedence of
the principal functor.

An expression may contain adjacent unparenthesized
subexpressions, each with operators of the same precedence. In
such a situation, operator associativity defines the order of
evaluation, if there is one. Any other order of evaluation must be
explicitly defined using parentheses. For example, the division
operator, "/", is left associative, which determines that the
expression 3 2 / 4 / 4 is grouped as (3 2 / 4) / 4. The goal
disjunction operator, "; ", is right associative, therefore
goal 1 ; goal 2 ; goal 3 is grouped as
goal-1 ; (goal 2 ; goal 3). The comparison operator,"<",
is noCassociative, so the expression x < Y < z has no
evaluation. Adjacent expressions for which there is no
associativity must be explicitly parenthesized or a syntax error is
returned.

An operator's type, a combination of its position and
associativity, is a symbol used in the declaration of the operator.
Prefix operators have type:

- fx, not associative

- fy, right associative

Infix operators have type:

- xfx, not associative

- xfy, right associative

- yfx, left associative

Postfix operators have type:

- xf, not associative

BNR Prolog User Guide

100 Part II Prolog, a Logic Programming Language

- yf, left associative

In these type symbols, "f" stands for the position of the operator
and "x" and "y" represent the arguments for the operator. "x"
represents an argument that does not allow associativity with the
operator, and "y" represents an argument that does allow
associativity.

More formally, a left associative operator must have the same or
lower precedence argument to its left. Similarly, a right
associative operator must have the same or lower precedence
argument to the right. This is the interpretation of "y" in the
type symbol. "x" in the type symbol means that the argument
must have a strictly lower precedence.

In general, it is good programming practice to parenthesize
expressions to enforce the expected evaluation order. The
exception to this rule is when the operators used have well
known precedence and associativity rules.

The format of an operator definition is

op(_Precedence, _Type, _Operator_symbol).

The operator declaration must be asserted before its symbol is
used as an operator, even including the definition of the
operator's semantics. Once it has been declared, all predicates
handling Prolog syntax, for example sread, swrite,
load_context, and listener, recognize expressions using the
new operator.

An operator can have two definitions, where the types are either
infix and prefix, or infix and postfix, providing the precedences
match for each type. Operators cannot have three types, nor can
the two types be prefix and postfix. "-" is an example of an
operator that is both prefix and infix.

The semantics of an operator is the responsibility of the
programmer. If there is more than one definition for the same
operator, the semantics may be different for each definition.

BNR Prolog User Guide

Chapter 9 Operators 101

Predefined Operators

The list of predefined operators includes

op (1200, xfx, : -) .
op (1200, fx, : -) .
op (1200, fx, ?-) .

op(ll00, xfy, ;) .
op(1050, xfy, ->).
op(l000, xfy, &) •

op(950, xfx, where).%
op(950, xfx, do).
op (7 0 0, xfy, :) .
op(700, xfx, ==).
op(700, xfx, =:=). %
op(700, xfx, <>).
op(700, xfx, =\=). %
op (700, xfx, is).
op(700, xfx, =).
op (700, xfx, \=).
op(700, xfx, <).
op(700, xfx, =<).
op(700, xfx, >).
op(700, xfx, >=).
op(700, xfx, @=).
op(700, xfx, @\=). %
op(700, xfx, \==). %
op(700, xfx, @<).
op(700, xfx, @=<). %
op(700, xfx, @>).
op(700, xfx, @>=). %
op(500, yfx, +)
op (500, yfx, -) .
op(500, fx, -) .
op(400, yfx, *).
op(400, yfx, /).
op(400, yfx, //).
op (300, yfx, **).
op(300, xfx, mod). %

% if
% directive
% query
% disjunction, else
% if-then
% conjunction

constraints
% foreach
% membership
% arithmetic equality

arithmetic equality
% arithmetic inequality

arithmetic inequality
% arithmetic evaluation
% unifiability
% not unifiable
% less than
% less than or equal to
% greater than
% greater than or equal
% literal identity

literal non-identity
literal non-identity

% literal less than
literal less than or identical

% literal greater than
literal greater than or identical

% addition
% subtraction
% negative
% multiplication
% division
% integer division
% exponentiation

modulus

BNR Prolog User Guide

Chapter 10 Cyclic Structures 103

Chapter 10
Cyclic Structures

The chapter "Pure Prolog" introduced the concept of cyclic
structures, or "rational trees" as they are sometimes called. A
cyclic structure is formed when a variable is unified with a term
containing that variable, such as in

_X = fred(_A, charlie, zebra(3, _X))

Cyclic structures can be useful in problems which are naturally
described in terms of graphs or networks. Most Prolog systems
permit the creation of cyclic structures, but unification of these
structures usually results in a stack overflow. (The so-called
"occurs check," which prevents cyclic structures from being
created, is usually omitted for efficiency reasons.)

This chapter describes the support offered in BNR Prolog for
cyclic structures and illustrates their use with examples drawn
from the theory of finite state machines. Note that extensive use
of large cyclic structures may require additional local stack
space.

Cyclic Structure Support

The support for cyclic structures is concentrated in a few critical
operations: unification, the special predicates acyclic,
decompose, and spanning tree, and the general purpose
predicates variables and bind_ vars.

Unification is the most basic operation supported on cyclic
structures. As demonstrated in later examples, some complex
equivalence operations can be mapped directly to unification of
cyclic structures, resulting in very simple and efficient
implementations.

BNR Prolog User Guide

104 Part II Prolog, a Logic Programming Language

The monotone filter acyclic (Term) is an inexpensive test for
noncyclic structures. Therefore not (acyclic (Term)) is a
persistent filter for detecting cyclic structures.

One strategy for handling cyclic structures is to decompose them
into pieces that are trees, operate on the pieces, and then glue the
results back together with unification. decompose and
spanning tree provide two different ways to decompose a cyclic
structure rnto lists of trees which can be handled by conventional
means.

decompose

The syntax for decompose is

decompose(_Structure, _Tree, _List_of_Unifications)

where Structure is the input argument. The output, Tree, is
a tree structure which becomes a copy of Structure if-
List of Unifications is executed, where a copy has the same

structure but different variables. List of unifications is a
list of the form

[_Varl = _Treel, Var2 = _Tree2, ...]

where each Varn is a variable and each Treen is an acyclic
structure. The outputs of decompose are-determined uniquely by
the structure of the input, but may be different from the sequence
of unifications by which the cyclic term was originally
constructed.

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 1 05

An example is the use of decompose on the following cyclic
structure

?- [(_X = fred(_A, charlie, zebra(3, _X))),
decompose(_X, _T, _L)].

?- [(fred(_A, charlie, zebra(3, fred(_A, charlie,
zebra (3, fred (_A, char lie, zebra (3, [..])))))) =
fred(_A, charlie, zebra(3, fred(_A, charlie, zebra(3,
fred(_A, charlie, zebra (3, [..]))))))),
decompose(fred(_A, charlie, zebra(3, fred(_A, charlie,
zebra(3, fred(_A, charlie, zebra(3, fred(_A, charlie,
zebra(3, fred(_A, charlie, zebra(3, [..])))))))))),
_T, [(_T fred(1, charlie, zebra (3, _T)))])].
YES

where, after a certain depth has been reached, a cyclic structure
is represented by " [..] ".

The outputs of decompose are a minimal representation of the
internal form of the term. decompose replaces each
substructure which is referenced more than once with a variable
and adds a corresponding unification term to the list. In
practice, this is often, but not always, a logically minimal
representation as well.

spanning_tree

The use of spanning tree is similar to decompose. The
difference between them is that spanning tree performs the
same operation as decompose, but only after the second
occurrence of a substructure. The effect is that the outputs from
decompose are "minimal" sized pieces, while spanning tree
returns "maximal" sized pieces. In particular, the second
argument of spanning tree is a maximal tree spanning the
graph described by the Input.

BNR Prolog User Guide

106 Part II Prolog, a Logic Programming Language

The following example illustrates the differences between the
outputs from decompose and spanning tree. Consider the
cyclic structure _ X formed by executing

[_X fred(_X, _Y, Z),
_Y = george(_X), _z = harry(_Y)].

The arguments _T and _Las returned by decompose (_X, _T,
_L) are

_T,
[(_T fred(_T, _1, harry(_l))),

(_1 george (_T))
]

while spanning_tree (X, _T, _L) returns:

fred(_l, george(_2), harry(_3)),
[(_1 fred(_l, george(_2), harry(_3))),

(_2 fred(_l, george(_2), harry(_3))),
(_3 george(_2))

]

Normal recursive Prolog predicates are meant to apply to trees
and generally do not terminate when applied to cyclic structures.
The cyclic structure decomposition/recomposition strategy
mentioned earlier is implemented by using decompose or
spanning tree to convert a cyclic structure to a tree, perform
the desired transformation, and execute the list of unifications
that reconstructs the original structure. The basic techniques
are

spanning_tree(_Graph, _MaxTree, _List),
% extract a maximal tree

treepred(_MaxTree), % operate on the tree
List % put back missing branches by executing

%unifications _Maxtree is a copy of _Graph
%on which treepred has operated

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 107

or

spanning_tree(Graph, _MaxTree, _List),

treepred(_MaxTree),
_Graph= _MaxTree,

% extract a maximal tree
% operate on the tree
% unify results back into _Graph

The print and portray predicates use techniques such as these
to output cyclic structures in a readable form by means of
predicates similar to the following:

cyclic_print(_Term) :
acyclic(_Term), !, writeq(_Term).

cyclic_print(_Term) :
not(not([bind_vars(_Term), cycprt(_Term)])).

cycprt(_Term) :- decompose(_Term, _T, _List),
writeq(_T where _List).

where is a predefined infix operator with no special meaning
used to make printing of expressions involving cyclic structures
or constraints easier to read. bind vars binds any variables in
the cyclic structure Term to its own symbolic name so it won't be
lost during the decompose operation. not (not (. . .)) then
undoes these bindings as well as discarding the auxiliary
structures built in cycprt.

As well as the predicates mentioned previously, cyclic structures
can be used with assert, remember, and findall, with one
exception. Structures formed by looping a tail variable, such as

?- ([_X .•] = [a, b, _X ..]).

?- ([a, b, a, b, a, b, ...]
YES

[a, b, a, b, a, b, ...]) .

cannot be copied and produce errors if encountered. However,
such looped structures can be unified. For example, x above
unifies with Y given by executing

?- [(_Y = [a, [_Z ..]]), ([_Z ..] = [b, a, _Z ..])].

BNR Prolog User Guide

108 Part II Prolog, a Logic Programming Language

as seen in the following:

?- ([_X •.] = [a, b, _X .•]), (_Y = [a, _Z ..]),

([_Z ••] = [b, a, _Z •.]), ([_X .•] = _Y).

?- [([a, b, a, b, a, b, ...] = [a, b, a, b,
([a, b, a, b, a, b, a, ... l = [a, b, a, b,
([b, a, b, a, b, a, ...] = [b, a, b, a, b,
([a, b, a, b, ... l = [a, b, a, b, a, b, a,

YES

Finite St.ate Machine Problem

a, b, ...]) ,
a, b, a, ...]) ,
a, ...]) ,
...]) l .

To illustrate the application of cyclic structures, consider some
classical problems involving finite state machines. Finite state
machines are not only an important topic in theoretical
computer science and automata theory, but play an important
practical role in both hardware engineering (for example,
control circuits for bus protocols) and software engineering
(parsing and searching algorithms). A finite state machine can
be informally described as a finite set of states, s, an input
alphabet, I, an output alphabet, o, the state transition function

next(S, I) --> S

and the output function

out(S) --> 0

,,,,
,.. •1

II Sn On I
•• ,1

11111111 11111111 11111111'

State Description

It is usual to specify one of the states as the initial state, SO. A
natural and frequently used representation is as a labeled graph
called a state transition diagram in which nodes represent states
and edges represent transitions.

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 109

1,

2, 4

machinel State Transition Diagram

Such transition diagrams are usually represented in Prolog as
facts if the only object is to simulate their behavior. However, in
cases where one is concerned with issues such as testing
equivalence of machines or producing implementations with the
fewest states, a representation using cyclic structures is more
useful. A cyclic structure representation of the above graph is
constructed by the following program:

machinel(so) . -
so a(so, so, Sl, S2), - - - -
Sl b(Sl, Sl, S3, Sl), - - - -
S2 a (S2, so, Sl, SO), - - - -
S3 b(S3, S2, Sl, SO). - - -

The various states are represented as variables, Sn, the input set
are integer numbers corresponding to argument positions, and
the output map is encoded in the functor names, for example, a
orb. By convention, the state machine input value of 1 acts as the
identity transition for each state of the final state machine. Its
inclusion ensures that decompose will return every reachable

BNR Prolog User Guide

110 Part II Prolog, a Lotic Programming Language

state. The initial state is the argument to machine 1. Each call
on machinel constructs a new instance of a cyclic structure
representing the machine and unifies it with the argument.
Note that the cyclic structure representation returned only
includes states reachable from _SO. Outputs may be left as
variables representing "don't care" or "don't know" conditions.

The classic problems of finite state machine theory are

- calculating the behavior from the state description

- testing two machines or states for equivalence

- testing or constructing minimal machines

- calculating sequences for testing a machine

To simulate the behavior of a finite state machine such as
machine 1, we can use

/* behavior(_Inputs, _Initial_state,
_Outputs, _Final_state)

*I

% end of input list
behavior([], _s, [], _S).

% state transition
behavior([_N, _Ns ..], S, [_F, _Fs ..], _Final)

arg(_N, S, _F(_A ..)),
behavior(_Ns, _F(_A ..), _Fs, _Final).

simulate(_Input, _Machine, _Output) :
_Machine(_M), behavior(_Input, _M, _Output,) .

The following query generates the output of the state machine
rrachinel, given the input sequence 2, 3, 3, 4.

?- sirrulate ([2, 3, 3, 4], machinel, _Out).
?- sirrulate([2, 3, 3, 4], machinel, [a, b, b, a]).

YES

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 111

Note that this algorithm depends on the use of numbers for the
input alphabet. (The use of arg makes the query nonlogical, but
it requires only two logical inferences per transition.)

Consider the following state transition diagram and its
corresponding cyclic structure representation.

l , 2 ., 1 , 2 , 4 ,, ,

,1• ''•1,1.-----'1•' ''•11
1
1 _s~ :,/11 .i ,,:,,~.~ ~ ..)

2 ,,, 1 , J .. 1 ,
,,. ' 2 ,.. ,,

1 1 _ S2 a ,11◄ I,, _ S 3 b)1

1• ,\ 1···••1o ••1

\\ , ... ,... ,... .,,
I S4 a ,,,- .,,, ····1

machine2 State Transition Diagram

machine2(SO) -so a(so, so, Sl, S2), - - - -
Sl b(Sl, Sl, S3, Sl), - - - -
S2 a (S2, so, Sl, S4), - - -
S3 b(S3, S2, Sl, S4), - - - -
S4 a (S4, so, Sl, S2). - - - -

BNR Prolog User Guide

112 Part II Prolog, a Logic Programming Language

From the pictures it may be evident that this machine is
equivalent to machine 1, since states SO and S4 are really the
"same" state. To test this using the Prolog representations, it is
only necessary to unify the two descriptions as follows:

% predicate to check for machine equivalence
equivalent(_Machinel, _Machine2) :

_Machinel(_M), _Machine2(_M).

?- equivalent(machinel, machine2).
?-equivalent(machinel,machine2).

YES

equivalent is written to use the names of machines as
arguments in order to avoid the echoing of cyclic structures by
the listener. Note that unification represents both equivalence of
machines and equivalence of states. This is especially useful if
either of the machines has some "don't care" conditions (either
transitions or outputs).

decompose can be used in a utility predicate to extract the list of
reachable states from the cyclic structure representation.

% bind the states
states(_M, _State_list) :

decompose(_M, _Ml, _List),
extract_state(_List, State_list),
_List, % construct copy

M = Ml. % unify copy with original

extract_state([], []) .

extract_state ([_S _More ..], [_S, _Ss ..]) · -
extract_state(_More, _Ss).

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 113

A state machine is minimal if it has the fewest possible states for
a fixed behavior. Neither machinel or machine2 is minimal.
Since unification tests state equivalence, minimality can be
tested simply by

distinct ([_X]) .

distinct([_X, _Xs ..]) ·-
not(member(_X, _Xs)),
distinct (_Xs).

minimal(_Machine) :
_Machine (_M),
states(_M, _States),
distinct(_States).

?- minimal(machinel).
NO

?- minimal(machine2).
NO

The same technique provides a solution to another classic
problem of automata theory, that of constructing a minimal
machine equivalent to a given one. Given a cyclic structure
representation, use decompose to generate a list of unifications
which construct a duplicate machine and to extract its state list.
Then use member to check that each additional state is distinct
from the states already processed, otherwise merging it with its
"partner".

BNR Prolog User Guide

114 Part II Prolog, a Logic Programming Language

/* state minimization-
(minimize machine in cyclic structure format)

*/
minimize(_Machine, _Minimal_machine) :-

_Machine(_M), % get machine definition
states(_M, States), % extract list of states
decompose(_M, _Minimal_machine, _List),
construct (_States, _List, [], []).

/* construct(original_states, new_states,
distinct_orig_states, distinct new_states)

*/

construct ([J , [J ,) . % all done

construct([_S, _Ss ..], V _Tree, _Xs ..], _Old,
_New) :-

member(_S, _Old), !, % redundant state
member(_Tree, _New), % amalgamate state
construct(_Ss, _Xs, _Old, _New).

construct ([_S, _Ss .. J, [_V
[_New ..]) · -

_Tree, _Xs ..], [_Old ..],

V = _Tree,
construct(Ss, _Xs,

display_min(_Machine)

% construct machine
[_S, _Old ..], [_V, _New ..]).

minimize(_Machine, _M), cyclic__print(_M).

?- display_min(machine2).
_T where [
(_T a(_T,_T,_l,_T)),
(_l b(_l, 1,_2, 1)),
(1 b(_l,_T,_2,_T)),
l

?- display_min(machine2).
YES

Another common problem when dealing with finite state
machines is finding a set of test sequences to validate every
transition. With the cyclic structure representation,
spanning tree can be used to create a maximal tree from the
initial state to every other state. A nondeterministic version of

BNR Prolog User Guide

Chapter 1 O Cyclic Structures 115

behavior can be applied to the result to generate a complete set
of test vectors. The use of spanning tree ensures that the
generated sequences do not contain any unnecessary loops. The
algorithm is written to stop after the first transition not in the
spanning tree is reached. Thus, coverage is over all transitions
and not just all states.

/* ndbehavior(_Inputs, _Initial_state, _Outputs,
_Maxinputs)

/*

% first out of tree transition so stop
ndbehavior([], _O(..), [], ·- var(_O), !.

ndbehavior([_N, _Ns ..], _O(_A ..), [_F, _Fs ..],
_Maxinputs) ·-

integer_range(_N, 1, _Maxinputs), % try all outpaths
arg(_N, _O(_A ..), _F(_Al ..)), % state transition
ndbehavior(_Ns, _F(_Al ..), _Fs, _Maxinputs) .% recurse

test_sequence(_Machine, _Inputs, _Outputs)

?-

_Machine(_M), % get machine definition
termlength(_M, _Maxinputs, []),
spanning_tree(_M, _MTree, _),
ndbehavior(_Inputs, _Mtree, _Outputs, _Maxinputs),

M = Mtree. % unify machines

test_sequence(machinel, I, _O).
?- test_sequence(machinel, [1] , [a]) .
?- test_sequence(machinel, [2] , [a]) .
?- test_sequence(machinel, [3, 1 J , [b, bl l .
?- test_sequence(machinel, [3, 2 J, [b, b]).
?- test_sequence(machinel, [3, 3, 1 J , [b, b, bl).
?- test_sequence(machinel, [3, 3, 2 l , [b, b, al).
?- test_sequence(machinel, [3, 3, 3 l , [b, b, bl) .
?- test_sequence(machinel, [3, 3, 4 l , [b, b, al).
?- test_sequence(machinel, [3, 4 l , [b, bl).
?- test_sequence(machinel, [4, 1 l, [a, al) .
?- test_sequence(machinel, [4, 2 l , [a, al).
?- test_sequence(machinel, [4, 3 l , [a, bl).
?- test_sequence(machinel, [4, 4 l, [a, al).

YES

BNR Prolog User Guide

116 Part II Prolog, a Logic Programming Language

These examples illustrate the support for cyclic structures and
show how such structures may be used to formulate problems
with a natural graph representation, such as finite state
machine theory. In cases where cyclic structure
representations are appropriate, they can be much more efficient
than the typical fact representations for handling problems
involving the global structure of the graph.

BNR Prolog User Guide

Part Ill Arithmetic 117

rfJc;HrU □□□
&\ rr □ U [}u ffiru@U □ ©

BNR Prolog User Guide

Chapter 11 Functional Arithmetic 119

Chapter 11
Functional Arithmetic

Traditionally, Prolog has been oriented toward symbolic rather
than numeric computation. Based on a simple recursive data
structure, a purely logical form of integer arithmetic is possible
in most Prolog systems, but it is not efficient. A system of
functional arithmetic, similar to that described in this chapter,
is available in most Prolog systems.

Functional arithmetic is so named because it is deterministic
and requires full instantiation of the arithmetic terms in
computations. For example, arithmetic comparison operators,
such as "==", "<",">=",evaluate successfully only if their
arguments are both ground terms and valid arithmetic
expressions. Such expressions are combinations of numbers,
arithmetic operators,(+,-,*,/,//) and such arithmetic
functions as sin, cos, and min. For a complete list, see the
BNR Prolog Reference Manual.

Arithmetic evaluations in programs may be a source of
nonlogical behavior. For example

?- _X = 2, X < 5.

succeeds but

?- _X < 5, X = 2.

fails because X is unbound when"<" is called.

The instantiation restriction in functional arithmetic causes not
only unwanted failures, but also unidirectional programs. For
example, the expression

X is sin (_Y)

BNR Prolog User Guide

120 Part Ill: Arithmetic

where Y is a number, computes the sin of Y and unifies the
result whh the variable x. However, using the same
expression, it is not possible to compute the arcs in of x and
bind it to the variable Y.

This chapter examines the methods by which functional
arithmetic expressions are evaluated, ways of taking advantage
of failures, and ways of avoiding failures by using constraints to
delay the execution of arithmetic expressions until the terms are
ground.

Evaluation

The operator is forces evaluation of the right operand, which
must be an arithmetic expression. This fails if the operand
contains any uninstantiated variables or otherwise cannot be
evaluated. If the left operand is a number, the result of the
evaluation is equated with it. However, if the left operand is a
variable, then the result of the evaluation is bound to it. For
example,

?- 5.0 is 2 + 3. % succeeds, 5.0 equals 5
?- A is 2 + 3. % succeeds, A is bound to 5
?- A is 2 + X. % fails, X is a variable
?- A is 2 + x. % fails, "x" cannot be evaluated
?- A is sqrt (4). % succeeds, evaluates sqrt(4)
?- A is sqrt(-1). % fails, cannot evaluate sqrt (-1)
?- X = 4 II 2. % binds X to the term '11'(4, 2)

Arithmetic comparison operators force the evaluation of both the
left and the right operands. The results of the evaluations are
then compared arithmetically. For example,

?- (5 + 1) -- (2 * 3).
?- (X + 1) -- (2 * 3).
?- sin(1tl3) > cos (1tl3) .
?- sin(40) > cos(_X).

?- 5 5. 0.
?- 2 <> 3.
?- 2 <> 2.
?- 2 <> X.

BNR Prolog User Guide

%
%
%
%
%
%
%
%

succeeds, both evaluate to 6
fails, Xis not a number
succeeds
fails, Xis not a number
succeeds, values equal
succeeds, values not equal
fails, values equal
fails, expression not ground

Chapter 11 Functional Arithmetic 121

?- not(2 == _X). % succeeds, comparison fails,
?- _xis (5.6 * 2) // 3. % succeeds, evaluates to 3

Note that the last query evaluates the right operand to 3 because
the last operation performed is integer division,"//". If the last
operator is changed to"/", _x binds to 3. 7 3333.

Some Prolog systems produce error conditions when an invalid
arithmetic expression is evaluated. The pragmatic reason for
this is that an error message quickly informs the programmer of
difficulty, simplifying the detection of these particular bugs.
However, evaluation failures can be usefully exploited, as shown
in the next section, or avoided completely through the judicious
use of constraints.

Extending Functional Arithmetic

With any language, the validation of arithmetic formulae in an
arithmetically intensive application is a major problem. If
writing a recursive procedure computing, for example, the
evaluation of a polynomial, how does one ensure that the
formula computed by the program is the correct one? When
given symbolic or uninstantiated arguments, a function can
compute symbolic expressions for validation against the
specification by using the semantics of failure.

Consider the problem of writing a procedure horner that either
computes the value of a polynomial or returns a symbolic
expression if the polynomial cannot be evaluated. A typical set of
questions and answers for this procedure might be

?- horner([a, b, cl, x, _R).
?- horner ([a, b, c], x, (a + (x * (b + (x * c))))) .

YES

?- horner([2, 4, 6], 5, _R).
?- horner[[2, 4, 6], 5, 172].

YES

BNR Prolog User Guide

122 Part Ill: Arithmetic

?- horner([2, _a, 3], 5, _R)
?- horner([2, _a, 3], 5, (2 + (5 *(_a+ (5 * 3))))).

YES

One way to implement such a procedure is to define an infix
operator":=" that either performs an arithmetic evaluation, if it
is possible to do so, or otherwise simply unifies its arguments.

op(700, xfx, ':=').
X ·= Y :- Xis _Y, I

X := X.

The horner procedure for polynomials is then defined by

% horner(_Coefficients, _X, _Result)
horner([_A], _, _Result) :- !, Result A.
horner([_A, _As ..], _x,, _Result) :-

horner(_As, _X, _NewResult),
Result := A+ X * NewResult.

All occurrences of is used in computing values of a polynomial
are replaced with ": =". The resulting arithmetic functions,
constructed with ": =", compute numerically when given valid
numeric arguments, but if the functions fail, they are forced to
operate "symbolically".

Vector Arithmetic Program

It is often useful to extend a language by providing user written
arithmetic or nonarithmetic functions which are evaluated in a
functional language. Consider a system that performs
functional arithmetic on vectors, represented as lists of
numbers, which can answer questions such as

% scalar arithmetic
?- (_X := 2 + 3).

?- (5 := (2 + 3)).

YES

BNR Prolog User Guide

Chapter 11 Functional Arithmetic 123

% multiply vectors
?- _X := [2, 3, 4] * [3, 4, l].

?- ([6, 12, 4] := ([2, 3, 4] * [3, 4, l])).

YES

% add scalar to vector
?- X := 3 + [l, 2, 3].

?- ([4, 5, 6] := (3 + [l, 2, 3])).

YES

% multiply vectors by scalars, then add vectors
?- X := 4 * [l, 2, 3] + 2 * [7, 8, 9].

?- ([18, 24, 30] ·= ((4 * [l, 2, 3]) +
(2 * (7, 8, 9)))).

YES

% inner product of vectors
?- _X := [l, 2, 3] " [2,' 3, -1].

?- (5 := [{l, 2, 3]" [2, 3, -1])).

YES

A simple way to do this is to replace the definition of":=" above
with

Result := _ScalarExp :- Result is _ScalarExp, ! .
% _ScalarExp is a scalar expression

[_Vector ..]:= [_Vector ..]:-!
% [_Vector ..) is a vector

Result := _VectorExp :- reduce{_VectorExp, _Result).
% _VectorExp is a vector expression

op(700, xfx, ':=').
op(500, xfx, '"').

% assignment operator
% dot product operator

and provide a reduce procedure such as the one developed in the
chapter "Pure Prolog". The first rule for this version of reduce
handles evaluation of the inner products of vectors. The second
rule handles all the other cases by insuring that _Op is a valid
vector operator, evaluating the operands individually, and
performing the appropriate operation on the results, as can be
seen in the following program:

BNR Prolog User Guide

124 Part Ill: Arithmetic

% reduce arithmetic operations on vectors, scalars,
% or combinations thereof
reduce ((_X " _Y), _Z) : - ! , inner (_X, _Y, _Z) .
reduce(_Op(_X, _Y), _Z)

vector_op (_Op),
Xl ·= _X,

Yl := _Y,
I . ,
vector(_Xl, _Yl, _Op, Z).

% code for computing inner product
inner ([l , [l , 0) : - ! .
inner ([_X, _Xs ..], [_Y, _Ys ..], _Z)

inner(_Xs, _Ys, _Z0),
Z is X * Y + Z0.

% list of valid vector operators
vector_op(+).
vector_op (-).
vector_op(/).
vector_op (*).

vector_op (min) .
vector_op (max) .

% case 1: last 3 arguments must be vectors, that
% is numeric lists, of equal length
vector([], [], _Op, []) :- ! .

vector ([_X , _Xs ..],
[_Z, _Zs ..])

I . ,

[_Y, _Ys ..], _Op,

Z is _Op(_X, _Y),
vector(_Xs, _Ys, _Op, _Zs).

% case 2: argument 2 must be a number
vector (_X, [l, _Op, []) : - numeric (_X), ! .
vector (_X, [_Y, _Ys ..], _Op, [_Z, _Zs ..])

I . ,
numeric(_X), Z is _Op(_X, _Y),
vector(_X, _Ys, _Op, Zs).

BNR Prolog User Guide

Chapter 11 Functional Arithmetic 125

If the is operators in vector and inner are changed to":=", the
components themselves can be vectors. Thus, the program can
be significantly generalized.

Techniques such as these take advantage of the failure
semantics for invalid arithmetic expressions, providing an
alternative interpretation if they cannot be numerically
evaluated.

Arithmetic with Constraints

Putting passive constraints on terms that evaluate arithmetic
expressions guarantees that they will not fail because of
unbound variables. Just as passive constraints restore the
persistent or monotone properties to filters, they also alleviate
some of the illogical behavior caused by the evaluation of
arithmetic expressions.

Passive constraints are used with a simple arithmetic
comparisons, where the execution of the constrained
expressions are deferred until the variables in the expressions
become ground. Some examples are

{ X > O}
{ X >= _Y}
{ X <> _Y}
{ X + y -- Z} -

In general, any arithmetic comparison can be the condition in
an active constraint which has the form

{condition-> action}

For example,

{_T > 2000 -> shut_off_reactor}

is read as:
"if and when (_T > 2000) do shut off reactor".

BNR Prolog User Guide

126 Part Ill: Arithmetic

Active constraints may also be nested, as in

{ (T > 4000) -> {(_Distance< 10000) -> flee_madly}}

which has the same meaning as

{[_T > 4000, _Distance< 10000] -> flee_madly}

Data fiow constraints are used on is expressions, and have the
form

{_Xis expression}

Execution of is is deferred only until expression is ground.
Data flow constraints restore the commutative properties that
are lost by functional arithmetic. With the use of data flow
constraints, both of the following examples succeed:

?- _x = 2, {_Y is _x + _X}.
?- {_Y is X + _X}, X = 2.

Critical Path Scheduling Problem

One application using data flow constraints solves the problem of
computing a critical path using a Program Evaluation and
Review Technique (PERT) chart. To define such a chart, one
must determine if any activity precedes another, and the time
required to complete each activity.

The time required to complete the activity, the activity time, is the
difference between an early start and an early finish, or between
a late start and a late finish. Slack time is the difference between
the latest and the earliest times an activity can complete without
disrupting a project. The critical path is the list of activities
between start and finish which have no slack time. Consider the
following example.

BNR Prolog User Guide

Chapter 11 Functional Arithmetic 127

Given a start time, the program provides:

- a list indicating the activity time, the latest start
time, the earliest finish time, and slack time for each
activity

- the overall time required for the project.

The calling interface looks like
plan(_Start, _List, _TotalTime), where

List consists of variables for each activity, which
are bound to lists of the form
[ActivityTime, EarlyFinish, LateStart, Slack] where

Slack is positive and defined to be
(LateFinish - EarlyFinish), or
(LateFinish - (EarlyStart + ActivityTime))

- _Start is a dummy first activity:
[O, _StartTime, ,

TotalTime is the amount of time required to complete
the project

_h

Sample Project

BNR Prolog User Guide

128 Part Ill: Arithmetic

/* Prolog program defining the "Sample Project" is: */

plan{_Start, [_a, _b, _c, _d, _e, _f, _g, _h], _Finish)

activity { [Start], - a, [_d, - fl, 10),
activity ([_Start], _b, [_d, _el, 20) I

activity ([_Start], - c, [_e, _g]' 30) I

activity ([_a, _bl, _d, [f] ' 18), -
activity { [_b, - c]' - e, [_g]' 8) '
activity { [_a, - d]' - f, [_g]' 3) '
activity { [_e, - fl, _g, [- h]' 4) '
finish ([_g]' _h, - Finish).

activity{_Prereq, [_ATime, _EFinish, _LStart, _Slack],
_Depend, _ATime)

early_start(_Prereq, EStart),
{_EFinish is EStart + _ATime},
late_finish(_Depend, _LFinish),
{_LStart is LFinish - _ATime},
{_Slack is LFinish - _EFinish}.

finish (_P rereq, [0, ES tart, _ ES tart, 0] , _ ES tart)
early_start{_Prereq, _EStart)

early_start ([[_, _EFinish, J l, _EFinish) : - ! .
early_start ([[_, EFinish,] , _Prereq ..], _Max)

{_Max is max{_EFinish, EFinish2) },
early_start{_Prereq, _EFinish2).

late_finish ([[_, _LStart, J l, _LStart) : - !
late_finish ([[, _LStart, _l, _Subseq ..], _Min)

{_Min is min{_LStart, _LStart2)},
late_finish{_Subseq, _Lstart2).

/* Display PERT schedule and total hours required*/

schedule :-
plan([0, _Start,], _List, _Total),
Start is 0,

nl, write('Total: ' _Total),
nl, write(' [ATime, EFinish, LStart, Slack] '),
nl, print schedule(_List).

BNR Prolog User Guide

Chapter 11 Functional Arithmetic 129

print_schedule([]) :- nl.
print_schedule ([_X, _Xs ..])

write (' ['),
row (_X),

write(']'), nl,
print_schedule(_Xs).

row ([]) : - ! .
row([_X, _Xs ..])

X < 10 ->
write(' '),

% adjust spacing

write(_X, ' '),
row (_Xs).

Note that this program can be generalized if the activity times
are not supplied as part of the program, but are supplied as
arguments.

Although constraints restore some logical properties, the
unidirectional behavior of functional arithmetic does not express
true arithmetic relations. This issue is examined in the chapter
"Relational Arithmetic".

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 131

Chapter 12
Relational Arithmetic

BNR Prolog introduces a new data type for numbers that is
distinct from floating point or integer: the type interval. An
interval is an object that represents a real number lying between
a lower and an upper bound. The bounds of an interval are
floating point numbers that define its range, which may vary
over the life of the computation.

There are three principal characteristics of intervals that make
them interesting and useful. Intervals

- allow the expression of arithmetic relationships in a fully
logical and relational manner

- provide a means for proving statements about true real
numbers without being restricted to the limitations of a
particular floating point representation

- offer a mechanism for solving sets of linear and nonlinear
equations and inequalities

In this chapter, the primitives for creating and manipulating
intervals are explained, and several detailed examples using
intervals are presented.

Intervals provide a foundation for relational arithmetic, as
opposed to functional arithmetic. As the previous chapter points
out, arithmetic in most Prologs cannot be read or understood
declaratively; functional arithmetic obliges programmers to
write procedural programs. For example, an ordinary
arithmetic procedure such as

square(_X, _Y) Y is X ** 2.

BNR Prolog User Guide

132 Part Ill: Arithmetic

can be used only one way: to determine Y when X is bound. The
same equation cannot be used to determ1ne the square root of Y.
The query -

?- square(_X, 4).

fails because X is unbound. For square to be a reversible
procedure (assuming x is greater than O), another rule is
needed -

square(_X, _Y) :- _Xis sqrt(_Y).

IF X is not greater than O, even this is insufficient. This
limTtation in the semantics of functional arithmetic is removed
when arithmetic expressions operate on intervals, as explained
later in this chapter.

Another advantage of intervals is that they offer a means of
correctly performing arithmetic on real numbers rather than
floating point numbers. This distinction is an important one. In
most computer languages, so-called real number arithmetic is
performed with floating point numbers. However, these floating
point numbers are not strictly the same as the reals that they
approximate, and the errors induced by arithmetic operations on
them can quickly accumulate. Many numbers cannot be
expressed in the finite representation supported by most
computer systems. Thus, 1 . 1 * 1 . 1 is often 1 . 2 O 9 9 9 rather
than 1. 21.

Because of rounding problems, floating point numbers do not
obey all the axioms of real arithmetic, for example, the
associative law of addition. Evaluation of logically equivalent
expressions such as (x + Y) + z and x + (Y + z) yield
different numerical results and the equality fails.

Operating on intervals permits the automatic tracking of the
inherent worst-case imprecision of floating point arithmetic. As
a consequence, such formal properties of real arithmetic are
restored, and equations such as the above always succeed. Note
that numerically induced errors in equality (or inequality) tests
can be arbitrarily magnified when they are used to control the

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 133

flow of execution of a program, so restoring correctness to these
elementary operations is not just a matter of a slight
improvement in accuracy, but a qualitative change in the nature
of numerical processing.

Interval arithmetic can also be used to solve sets of simultaneous
linear or nonlinear equations, by systematically narrowing the
intervals defined by those equations. These techniques are
discussed later.

The Interval Type

Intervals are different from any other Prolog data type. In some
respects an interval is like a symbol: it has a unique identity and
can unify only with itself or an unbound variable. In other
respects, an interval is analogous to a variable: it narrows its
value as computation moves forward and returns to a previous
value by backtracking.

range

An interval can be created or queried using the range predicate.
If a goal of the form

range(_I, [_Lower, _Upper])

succeeds, it expresses the relation that I is an interval with the
floating point bounds Lower and Upper. The question - -

?- range(_I, [1.2, 4.5)).

binds _ I to a system generated object with a name such as

Interval 334260

Although it looks like a variable, this term should be thought of
as the name of a real number that is initially between the bounds
1 . 2 and 4 . 5 inclusive. This is called the numeric
interpretation.

BNR Prolog User Guide

134 Part Ill: Arithmetic

An interval term can also be interpreted as the set of all real
numbers that are in the closed segment between its lower and
upper bounds. This is called the regional interpretation.

There are occasions when one interpretation is preferable to the
other, but both serve only as mental models for understanding
the behavior of intervals. There is an analogy here with the two
interpretations of a logic variable. A variable can be interpreted
as referring either to something specific (but unknown) or to the
set of all its valid instantiations.

To illustrate some basic characteristics of intervals, consider the
queries

?- range(_I, [1.2, 4.5]), I= 2.6.

and

?- range(_I, [1.2, 4.5]), I= 3.3.

Both of these succeed because 2 . 6 and 3 . 3 are points which exist
in the interval between 1. 2 and 4. 5. However, the question

?- range(_I, [1.2, 4.5]), _I= 2.6, I= 3.3.

fails because the same real number I that lies in the range 1 . 2
to 4 . 5 cannot be both 2 . 6 and 3 . 3. The question

?- range(_I, [1.2, 4.5]), _I= 6.7.

also fails, this time because 6. 7 lies outside the range for I. An
interval created without specifying the upper and lower bounds,
for example

?- range(_I, [, l).

or more simply,

?- range(_I,) .

means that I lies between the largest positive and negative
interval numbers represented by the system, (approximately
-le38 and le38}. These are called indefinite intervals.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 135

While the usual interpretation of an interval is the numeric one,
there are occasions when the regional interpretation is more
convenient. For example, it is sometimes necessary to find the
midpoint of an interval, or the difference between the upper and
lower bounds of an interval. These built-in functions, midpoint
and delta, should be understood in terms of the regional
interpretation of intervals.

midpoint

The midpoint of an interval is obtained simply by calling the
midpoint function on the interval. Thus,

?- range(_A, [2, 10]), _Xis midpoint(_A).

yields the float X = 6 . 0. In other words the midpoint of an
interval is just the arithmetic mean of its upper and lower
bounds.

0.0 2.0 4.0 6.0 8.0 10.0

de1ta

Similarly, the delta function returns the difference between the
upper bound and the lower bound of an interval, so the query

?- range (_A, [5, 7]), X is delta (_A).

returns x = 2. 0.

X = 2.0 -

I - I
0.0 2.0 4.0 6.0 8.0

BNR Prolog User Guide

136 Part Ill: Arithmetic

The midpoint and delta functions are used in exactly the same
way as other built-in arithmetic functions.

range

The predicate range can be used not only to generate bounded
intervals but also obtain the upper and lower bounds of a given
interval. Thus, the extent to which an interval has been
narrowed by a constraint, such as an inequality or an arithmetic
function, can be determined by the range predicate. The results
of a range query are always outward rounded, so the result is
always slightly larger and never smaller than the actual interval
range. However, this may be lost by converting to decimal
notation for printing. For example,

range (_I,) ,
_I=< 1/3,
_I>= 1/7,
range(_ I, _R) ,
nl,write(_R).

[0.14286, 0.33333)
YES

print_interval

% set the interval
% constrain upper bound
% constrain lower bound
% what are bounds now?

The predicate print interval is used to write a term of type
interval. When used-with just one argument, print interval
writes the interval argument to the default output stream. If
there are two arguments, it writes the interval argument to the
stream specified by the first argument. For example,

?- range (_I, [0, 100)),
_I=< 1/3,
_I >= 1/7,
nl, print_interval(I).

[0.14285, 0.33334)
YES

% set the interval
% constrain upper bound
% constrain lower bound

Outward rounding also applies to print interval even when
the bounds may be integers, and is carried through the decimal
conversions as well.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 137

Note the effect of imposing two different range settings for the
same interval:

range (_I, [2, 8]),
range (_I, [-1, 3]),
nl, print_interval(_I).

[2.0, 3.0001]
YES

% set the interval
% set it again
% output range

The first constraint imposes a lower bound of 2 and an upper
bound of 8. The second further restricts the upper bound to 3.
However, the lower bound (2) is already higher than that
imposed by the the second constraint (-1), and therefore is not
changed. Imposing two different range settings on the same
interval is equivalent to constraining the upper and lower
bounds with inequalities.

Narrowing Intervals and Backtracking

As a computation proceeds forward, intervals can change their
values only by narrowing. An interval is narrowed if its lower
bound is raised, its upper bound is lowered, or both.
Backtracking, may undo the narrowing of an interval in a way
that is analogous to the unbinding of ordinary variables. The
semantics of narrowing can be described as applying additional
constraints to an interval. (This should not be confused with
" {}" described in the chapter "Control".)

If a goal narrows an interval such that the interval becomes
empty, the goal fails. Such an empty interval results only from
an inconsistent set of constraints. For example, the following
predicate, choice, constrains its interval argument to be either
the interval between 1 and 2, or the interval between 10 and 2 O.

choice (_I)
choice (_I)

range (_I, [1, 2]).
range (I, [10, 2 0]) .

BNR Prolog User Guide

138 Part Ill: Arithmetic

Then the goal

?- choice(I), _I>= 13, I=< 15.

tries the first rule for choice and fails because 13 is greater than
any real number between 1 and 2. Upon backtracking, I is
constrained by the second rule for choice and succeedsbecause
it is possible to further constrain the real numbers between 10
and 20 to be between the range specified in the goal (13 and 15).
On the other hand, the goal

?- choice(I), I>= 100, I=< 1000.

cannot succeed for either rule in choice.

Unification does not narrow intervals; only arithmetic operations
have this property. To find the extent to which a number of
intervals have been narrowed after they have been constrained, it
is helpful to write a variadic predicate that displays the current
range of a sequence of intervals. In the following example, note
the unification of intervals with unbound variables:

write_intervals() :- nl.
write_intervals(_I, _Is ..)

print_interval(_I),
write_intervals(_Is ..).

Even though two intervals initially have the same range,
downstream computation may affect the bounds of one interval
differently than the other, depending on what further
constraints are imposed on them. For instance, in the query

?- range (_A, [2, 3)),

range (_B, [2, 3)),

_A=< 2.5,
_B >= 2.5,
print_interval(_A, _B).

A and B, which initially have the same range, are narrowed to
the ranges [2.0, 2.5001] and [2.5, 3.0001] respectively.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 139

Interval arithmetic generated by equality, inequality, and basic
arithmetic functions has all the properties of pure Prolog.
Narrowing and backtracking have been discussed, as has the
impact of failure on consistency. In addition, interval arithmetic
1s:

- monotone: If an interval has an initial range Ri and a final
range Rt, then an initial range Q where Ri :2 Qi narrows to
a final range Ot where Rt :2 Ot, (This property is sometimes
called "inclusion isotone" in interval arithmetic literature).

- idempotent: Applying an interval equation or inequality twice
is the same as applying it once.

- commutative: The order of application of interval equations
and inequalities does not affect the result. (Note: interval
arithmetic does not commute with functions such as range
query or delta which access the current value of the range.)

- persistent: to a degree. Like constraints, interval equations or
inequalities can cause failure downstream, but failure does
not occur as long as there might be a solution.

Evaluating Interval Expressions

To make effective use of intervals, it is important to understand
the behavior of intervals when arithmetic expressions that
reference them are evaluated. Like floats and integers, intervals
can be components of such arithmetic expressions as equations,
inequalities or functions. There is a key difference between the
results of such operations with ordinary numbers (which
maintain constant values), and analogous operations with
intervals. The ranges of intervals may be narrowed when an
arithmetic expression is evaluated to maintain the truth of the
expression. Such intervals are said to have been constrained by
the arithmetic expression.

Interval arithmetic supports the evaluation of such operations as
"+", "-", sin, cos, equalities and inequalities. With the exception

BNR Prolog User Guide

140 Part Ill: Arithmetic

Equality

of exponentiation, "* *", where exponents are always integers,
floating point and integer numbers are coerced to intervals by
is. Constraints, " {}",if applied, have the same semantics as
described in the previous chapter.

If two different intervals are intended to have the same values it
is sufficient to constrain them with an equality constraint. For
example,

range(_A, [2, 4]),
range(_B, [1, 3]),
_A ==_B,

nl,write_intervals(_A, _B).
[2.0, 3.0001] [2.0,3.0001]
YES

constrains A and B to be the same henceforth. Any constraint
on A also applies to B, just as any constraint on B also applies
to ~A. Thus, - -

range(_A, [2, 3 l > ,
range(_B, [1, 5 l > ,

A B, -
B =< 2.4, -

_A>= 2.2,
nl,write_intervals(_A, B).

[2.1999, 2.4001] [2.1999,2.4001]
YES

shows two intervals with the same range. Notice that the order
in which the intervals are constrained does not matter.

The query:

range(_A, [2, 3 l) ,
range(_B, [1, 5 l) ,

I A >= 2.2,
B =< 2.4, -
A -- _B,

nl,write - intervals(_A, _B).

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 141

produces the same result.

Equating two intervals can be understood in either the numeric
or the regional interpretation. The expression A == B can be
re~M~~ - -

- the real number denoted by the interval A is the same as the
real number denoted by the interval _B -

- the region spanned by _ A is the same as the region spanned by
B

Which declarative reading is most appropriate depends on what
the intervals are intended to represent. No matter what the
interpretation, the same narrowing effect takes place on the two
intervals.

0.0

_A==_B
~

2.0 4.0 6.0 8.0

Note that the intervals A and B have now been narrowed to their
intersection. The effectof "==''(equals) on intervals is analogous
to that of"=" (unification) in pure Prolog. In particular, equality,
like unification, is an equivalence relation. The expression
not (A == B} succeeds if A and B have no points in common
and does no narrowing of either A or B. In effect,
not (_ A == _ B} can be used to test that two intervals are disjoint.

Thus, the following:

?- range(_A, (2, 3)),
range(_B,
not(_A

(4, 5)),

_B). % succeeds

BNR Prolog User Guide

142 Part Ill: Arithmetic

?- range{_A, [2, 4]),
range{_B, [3, 5]),
not(_A == _B). % fails

Timetable Problem

Equality on intervals is sufficient to solve the following nontrivial
timetable problem:

Bob, Carol, Ted, and Alice are busy executives who need
to have a meeting to discuss the filberflange shortage.
Bob's secretary must schedule a meeting this week at a
time when all four have no previous engagements. The
meeting is expected to require at least 45 minutes, and
must be held in a corporate conference room that has
engagements of its own.

The schedules of the four executives and the room are coded by
facts of the form

free_time{name, list-of-free-periods)

and each free period, where times are expressed in hours from
Sunday midnight, is the structure of the form

period(start-time, end-time).

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 143

For example,

% People Schedule:

free (' Bob ' , [
period(9, 10), period(13.5, 14.25),
period(35.25, 35.75), period(39, 41),
period(56, 58.25),
period(84, 84.5),
period(106, 107.25)]).

free ('Carol', [
period(l0, 10.5), period(12.5, 13.25),
period(36.25, 37.75), period(39, 41),
period(57, 58.25),
period(80, 85.5)]).

free (' Ted' , [
period(9, 11.5), period(12.5, 15),
period(33, 35), period(36, 42),
period(58, 59.25),
period(80, 82), period(92, 93.5),
period(105, 109.25) J).

free('Alice', [
period(l0.5, 15),
period(32, 34), period(38, 40),
period(56, 59), period(62, 63.75),
period(81.75, 83.25),
period(l04, 106.5))).

% Room schedule:

free(room, [
period(8, 12),
period(38, 40),
period(56, 57),
period(84, 86),
period(104, 106)]).

% Mon
% Tues
% Wed
% Thurs
% Fri

g.
0 Mon
% Tues
% Wed
% Thurs

% Mon
% Tues
% Wed
% Thurs
% Fri

% Mon
% Tues
% Wed
% Thurs
% Fri

% Mon
% Tues
% Wed
% Thurs
% Fri

BNR Prolog User Guide

144 Part Ill: Arithmetic

To convert a list of periods to a list of intervals define:

period_ interval ([J , [J) •
period_interval([period(_I, _J), _Ps ..],

[_ Ri j, _ Rs ..]) : -
range(_Rij, [_I, _J]),

period_interval([_Ps ..], [_Rs ..]).

free_time(_Person, _Ilist)
free(_Person, _Plist),
period_interval(_Plist, _Ilist).

To express the idea that one interval overlaps a member of a list
of intervals, define the predicate within analogous to member:

within(I , [_Int, ..]) I== Int.
within(I,[, _Ints ..]) :- within(I, [_Ints ..]).

To find the intervals (time-slots) during the week in which Bob,
Carol, Ted and Alice can meet in the Room, it suffices to ask the
question:

?- free_time('Bob', _Btimes),
free_time('Carol', _Ctimes),
free_time('Ted', _Ttimes),
free_time('Alice', _Atimes),
free_time(room, _Rtimes),
range (_Time, _),
within(_Time, _Btimes),
within(_Time, _Ctimes),
within(_Time, _Ttimes),
within(_Time, _Atimes),
within(_Time, _Rtimes),
0.75 =< delta(_Time),
nl,print_interval(_Time).

[39.0, 40.001]
YES.

% get free time lists

% Time is the period
%when they can all meet

% must be> 45 minutes

which produces the hour 39-40. Notice that all the work in the
question is done by within which in turn depends on the
operation of"==" on intervals.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 145

Inequality

So far, we have used inequalities only to change the upper and
lower bounds of an interval. But what does it mean to evaluate
an inequality between two intervals?

"=<" and ">="

From the numeric perspective A =< B simply means that the
point represented by A is less than or equal the point represented
by B. While this interpretation can always be applied, the
question still needs to be answered from the regional point of
view. There are three cases to consider:

- two disjoint intervals, A, and B, which do not affect each
other, for example: - -

?- range (_A, (1, 2)),
range (_B, (4, 6)),

A =< _B,

nl,write_intervals(_A, _B).
(1.0,2.0001) (4.0,6.0001).
YES

- two intersecting intervals, A and B, where neither A nor B
has narrowed, or where _A and _B narrow, for example:

?- range (_A, (2, 4)),
range(_B, (3, 5)),

A =< _B,

nl,write_intervals(_A, _B).
(2.0,4.0001) (3.0,5.0001).
YES

?- range(_A, (2, 4)),
range(_B, (3, 5)),

A >= _B,

nl,write_intervals(_A, _B).
(3.0,4.0001) [3.0,4.0001).
YES

BNR Prolog User Guide

146 Part Ill: Arithmetic

- one interval, A, contains the other, B, which either lowers
the upper bound of A or raises the :fewer bound of A, for
example: - -

?- range(_A, [2, 5]),
range(_B, [3, 4]),

A =< _B,
nl,write_intervals(_A, _B).

[2.0,4.0001] [3.0,4.0001]
YES

?- range(_A, [2, 5]),
range(_B, [3, 4]),

A >= _B,

nl,write_intervals(_A,_B).
[3.0,5.0001] [3.0,4.0001]
YES

"<"and">"

Since intervals are closed, that is they contain their end points, it
is difficult to give the strict inequalities which define open
intervals a clean numeric interpretation. The nearest
approximation to an open interval that is expressible with
floating point bounds is to treat the strict inequality

A < B

as a shorthand for

A=< B*

where B* is B with its lower bound moved to the next lower
floating poinCnumber representable (this is machine dependent).
For most users this is of little or no consequence. For those
interested in formal real arithmetic, use of"<" and">" should be
avoided.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 147

8*

floating point values 8

//1 -~ number line

Critical Path Scheduling Problem

In this section the critical path scheduling problem presented in
the chapter "Functional Arithmetic" is formulated using
interval equations and inequalities. Note that slack time maps
into a delta on intervals, and the prerequisite time relation maps
to a 11 =< 11 comparison.

schedule_int(_Deadline)
range (_Start, [O, OJ), % make Start an interval
range(_Total,), % also Total
plan_int(_Start, List, Total,

[10, 20, 30, 18, 8, 3, 4]),
range (_Total, [_Early,]) ,
nl, write('Total time: ' _Early), nl,
_Total =<_Deadline, % fails if infeasible
nl, write(' [Name, Start, Finish,

'Duration] '),
nl,print sched_int(_List).

plan_int(_Start, _Activity_List, _Deadline,
[_aTime, _bTime, _cTime, _dTime, _eTime,

fTime,
_Activity_List

_gTime])
[[a, _aStart,

[b, _bStart,
[c, _cStart,
[d, _dStart,
[e, _eStart,
[f, fStart,
[g, _gStart,

l ,
activities(_Activity_List), %

aFinish, aTime], - -
_bFinish, - bTime],

cFinish, cTime], -
dFinish, dTime], - -
eFinish, eTime], - -
£Finish, fTime],

_gFinish, _gTime],

cont ..

BNR Prolog User Guide

148 Part Ill: Arithmetic

Start=< _aStart,
Start=< _cStart,
bFinish =< _dStart,
cFinish =< _eStart,
dFinish =< fStart,
fFinish =< _gStart,

activities([)):-!.

Start =<
aFinish
bFinish
aFinish
eFinish

_gFinish

_bStart,
=< _dStart,
=< eStart, -
=< fStart, -
=< _gStart,
=< Deadline.

activities([[_Name, _Start, _Finish, _Time), List ..))

symbol (_Name),
real(_Start, _Finish),
numeric (_Time),
Finish== Start+ _Time,

activities(_List).

real() .
real (_X, _XS ..) [range(_X,

print_sched_int([]) :- nl.
print_sched_int ([_X, _Xs .. J)

write('['),
row_int(_X), nl,
print sched_int(_Xs).

row_int ([]) : - write ('] '), ! .
row_int ([_X, _Xs ..])

) , real (_Xs ..)) .

[numeric(_X) & X < 10] ->%create columns of output
write (' '),

prt (_X),
symbol(_X) ->

write(' ')
write (' '),

row_int (_Xs).

prt(_X)
prt(_X)

print_interval(_X),
write(_X).

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 149

is

As in functional arithmetic, the is operator is used to evaluate
arithmetic expressions, but the expressions now contain
intervals. The variable coercion rules related to the use of is
with intervals are

- if the left side of an is expression is an uninstantiated
variable, it will become instantiated

- if there is an interval on the right side of the expression, any
variable on the left will be instantiated as an interval

- if the left side of the expression is instantiated, the expression
becomes an equality test (like "==")

The expression

_Dis delta(_A)

computes a function on intervals (delta) and returns a floating
point number D. In this case is operates in the usual functional
arithmetic way. However, the expression

Xis A* A

where _A is an interval, binds _ x to an interval, not to a float.

Point lnt.ervals

When a floating point number or an integer occurs in an
expression containing an interval, that floating point number is
coerced to a small interval containing the integer or floating
point value. Since point intervals are usually intended to
represent real numbers that may not be exactly representable as
a floating point number, the region they span is of nonzero
length.

BNR Prolog User Guide

150 Part Ill: Arithmetic

Thus,

:- range(_A, [1.1, 1.1]), Dis delta(_A),
nl, write(_D).

8.3447e 7
YES

shows that A is an interval with nonzero width. This feature
makes it possible to evaluate expressions in real arithmetic
correctly. For instance,

?- range(_A, [1.1, 1.1]), 1.21 == A* A.

is true in interval arithmetic, but not in functional arithmetic.

Numerical Precision

Several kinds of numerical precision problems are treated
elegantly in interval arithmetic. As seen previously, floating
point round off errors (and their amplification after
multiplication) are handled automatically by interval arithmetic.
Another kind of precision problem that intervals handle
naturally is generated by imprecise input data.

In most real applications, input data is accurate to within a few
percent. When several such numbers are used as input data for
a complex arithmetic formula, it can be quite difficult to estimate
the accuracy of the results. One way of doing this is to perform a
sensitivity analysis, varying every input parameter separately
and observing the effect produced. However, this method not
only neglects synergistic effects, but it is very time consuming.

Interval arithmetic provides a natural solution to this kind of
problem: simply represent the input data as an interval. We can
convert the exact values of a point to an interval that contains the
error margin with the short program:

uncertainty(_Value, _Percent, _Interval)
Delta is Value* _Percent,

_Upper is Value+ _Delta,
Lower is Value - _Delta,

range(_Interval, _Lower, _Upper]).

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 151

As a simple example, consider the equation

X * X + 3 * Y == Z

Suppose z is the unknown quantity, while x is accurate to
within 30% and Y is accurate to within 12%. If our first
experiment produces values of_ x = 0 . 2 5 and_ Y = 5. 5 6, then
our interval solution for z is produced by

·- range(_Zint, _), % Zint is unknown
uncertainty(0.25, 0.3, _Xint),
uncertainty(S.56, 0.12, _Yint),
_Xint * _Xint + 3 * _Yint == _Zint,
_Delta is delta(Zint) / 2,
_Mid is midpoint(_Zint),

Percent is _Delta/ _Mid,
nl, write(_Percent), nl,
print_interval(_Zint).

which shows that the worst case error in z is slightly more than
12%. This reflects the fact that the main contribution to the error

' in z came from Y. Now, suppose the measurement for Xis
2. 25. The resulting error in z, obtained from a similar -
question, shows an error marg1.n for z of 22%. The increase in
the error for z reflects the greater contribution of the error in
_ x, now thaC_ x is greater than 1.

For such a simple example, it is easy to estimate by hand the
effect of an error in one variable on the result, but in general, the
problem requires a great deal of additional calculation. With
intervals, however, the effect of error propagation is built into the
quantities that are being computed.

Using Relational Arithmetic

Standard functional arithmetic in Prolog requires specific
instantiation patterns in arithmetic expressions which obliges
the programmer to think procedurally rather than declaratively.
If a term in an arithmetic expression is not ground, most Prolog
systems will either produce an error or fail.

BNR Prolog User Guide

152 Part Ill: Arithmetic

The idea of an unknown arithmetic quantity can be expressed by
an indefinite interval. The evaluation of any arithmetic
expression containing such an interval attempts to narrow its
upper and lower bounds in such a way that the expression is
true.

Temperature Conversion Problem

Consider a program that converts temperature measurements
from degrees Celsius to degrees Fahrenheit:

cel_far(_C, _F) :- Fis _C * (9 / 5) + 32.

In functional Prolog arithmetic this procedure can succeed only
if c is bound to an integer or a float. Thus,

?- cel_far(_C, 98.6).

fails because c is an unbound variable in the body of an
arithmetic expression. If, however, the query is changed so that

C is indefinite, it imposes an arithmetic constraint on C that
can only be satisfied by shrinking_ c . -

range(_C,),
cel_far(_C, 98.6),
nl, write_intervals(_C).

[36.999, 37.001]
YES

eel far can also be used to compute F from C, as in: - - -

· - range (_F,) ,
cel_far(37, _Fl,
nl,write_intervals(_F).

[98.599, 98.601]
YES

In other words, the unknowns in eel far are interchangeable,
and it is a genuine relation. -

The eel far relation can operate not only on point intervals, but
also on ranges of values for c or F. Thus, if the temperature

BNR Prolog User Guide

yhapter 12 Relational Arithmetic 153

range in Florida in July is between 8 6 and 1 O 4 degrees
Fahrenheit, this converts to the range [3 O , 4 O] in degrees
Celsius in the query:

range {_C,_),
range {_F, [86, 104)),
cel_far {_C, _F),
nl,write_intervals{_C).

[29.999, 40.001]
YES

On the other hand, the temperature range in Ontario in January
is between -34 and -10 degrees Celsius, which converts to the
approximate range [- 4 0, 14] in degrees Fahrenheit in the
query:

· - range {_C, [-34, -10)),
range{_F,),
cel_far {_C, _F),
nl,write_intervals(_C).

[-34.001, 10.0]

The relational nature of interval arithmetic has other
consequences. If both intervals C and F are declared to have
definite ranges, the constraint imposed by eel far narrows both
variables simultaneously. For example, if the7.nitial ranges for

c and F only contain subranges for which the conversion
equation is true, they are constrained to those subranges after
the equation is evaluated, as in the following:

range(_C, [-34, OJ),
range(_F, [-40, 14]),
eel far (_C, _F),
nl,write_intervals(_F, _C).

[-29.201, 14.001] [-34.001, -9.999]
YES

BNR Prolog User Guide

154 Part Ill: Arithmetic

Even if the constraints are imposed after the call to eel far, the
narrowing of one interval immediately propagates to the other.
For example:

?- range(_C,),
range (_F,) ,
cel_far (_C, _F),
range (_C, [-34, OJ),
nl,write_intervals(_F, _C),
range(_F, [-40, 14]),
nl,write_intervals(_F, _C).

If the initial ranges do not contain any subranges for which
eel far is true, the goal fails. Thus the following question fails:

?- range(_C, [-34, OJ),
range(_F, [33, 64]),
cel_far (_C, _F).

It is perhaps a bit misleading to use the is predicate when
expressing arithmetic relations among intervals. The relation
eel far could be written differently by equating the left hand side
withthe right side, as in

cel_far(_C, _F) :- F == _c * (9 / 5) + 32.

Note that"==" must compare the interval values of arithmetic
terms, whereas is coerces its left hand side to be an interval ifit
is a variable. Thus, to compute the eel far procedure defined
with equality, F must be declared as an-interval before eel far
is evaluated. For example, -

?- range(_F,),
range (_C, [32, 37]),
cel_far (_C, _F),
nl,write_intervals(_F).

If Fis not declared an interval, the execution of"==" attempts to
evaluate a logic variable, which fails, as in ordinary functional
arithmetic. The requirement that both terms in an arithmetic
operation evaluate to intervals also holds for inequalities.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 155

Gas Law Problem

One of the advantages of relational arithmetic is the greater
simplicity of programs. One interval equation can replace
several expressions in functional arithmetic. For example,
expressing the simple equation

P * V = N * 1.38e-23 * T

in functional Prolog arithmetic requires four rules (assuming is
fails on nonground arithmetic expressions), one for each possible
unknown:

gas_ lawO(- P, _v, N, - T)
p is N * 1.38e-23 * T I V.

gas_ lawO(P, _v, _N, T) ·-- -
V is N * 1.38e-23 * T I P.

gas_ lawO(- P, _v, _N, - T)
T is p * V I (1.38e-23 * _N).

gas - lawO(- P, _v, _N, - T)
N is p * V I (1.38e-23 * T).

With interval arithmetic, however, all that is required is

gas_law(_P, _v, _N, _T) :-
P * V == N * l.38e-23 * T.

and assurance that P, v, N and Tare numerics when
gas law is called. Thus, - -

:- range(_P,), gas_law(P, 1, 2, 3),
nl, write_intervals(_P).

[8.2799e-23, 8.2800e-23]
YES

finds a value for _P where_ v and_ T and_ N, are given values,
whereas

:- range(_V, _), gas_law(4, _V, 5, 6),
nl, write_intervals(_V).

[1.0349e-22, 1.0350e-22]
YES

BNR Prolog User Guide

156 Part Ill: Arithmetic

finds a value for v from P, T, and N. If the ranges for N, P,
V or T are not point intervais, then-they may narrow after the

rule for gas_law is called. The question

range (_ V, [1, 4)) ,
range(_N, [l.0e+22, 5.0e+23)),
gas_law(2, _v, _N, 4),
nl, write_intervals(_N).

[3.623le+22, 1.4493e+23]
YES

Similarly, if any one of the constrained intervals subsequently
becomes more constrained, the other dependant variables will
narrow accordingly. Thus the following

range (_V, [l, 4)),
range (_N, [l. 0e+22, 5. 0e+23]),
gas_law(2, _v, _N, 4),
nl, write_intervals(_V, _N),
_v >= 2, _v =< 2.5,
nl, write_intervals(_V, _N).

[1.0, 4.0001] [3.623le+22, 1.4493e+23)
[2.0, 2.5001] [7.2463e+22, 9.0580e+22)
YES

range(_V, [l, 4)),
range (_N, [l. 0e+22, 5. 0e+23)),
gas_law(2, _v, _N, 4),
nl, write_intervals(_V, _N),
_v >= 2, _v =< 2.5,
nl, write_intervals(_V, _N),
_N >= 8.le+22, _N =< 8.2e+22,
nl, write_intervals(_V, _N) .

[1.0, 4.0001) [3.623le+22, 1.4493e+23)
[2.0, 2.5001) [7.2463e+22, 9.0580e+22)
[2.2355, 2.2633) [8.0999e+22, 8.200le+22)
YES

If the ranges for P, v, N and T are ever constrained in such a
way that gas_la~ does not hold~the query fails.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 157

In this example:

range (_V, [l, 4]),
range(_N, [l.0e+22, 5.0e+23]),
gas_law(2, _v, _N, 4),
nl, write_intervals(_V, _N),
_v >= 2, _v =< 2.s,
nl, write_intervals(_V, _N),
_N >= 9e+29,
nl, write_intervals(_V, _N).

the constraint on_ N cannot be met and the entire question fails.

Many to Many Relations

In contrast to functional arithmetic, relational arithmetic can
express a many to many relationship.

Square Problem

The evaluation of an arithmetic expression containing intervals
constrains the intervals in such a way that the expression is
true. This means that arithmetic relations which have many to
one values constrain intervals to be in the range that contains all
the values for which the relation is true. For example if the rule

square(_X, _Y) :- Y is X * X.

is queried with either of the following,

?- square(2, _Y).
?- square(-2, _Y).

Y is bound to 4. Thus with the question

:- range(_X, _), square(_X, 4), print_interval(_X).
[-2.0001,2.0001]

all solutions for the square root of 4 are obtained, and the range
for_ X becomes the interval containing both square roots.

BNR Prolog User Guide

158 Part 111: Arithmetic

y

- .0 -1.0 1.0
-2.0

2

range(_X,), square(_X, 4)

This means that all solutions to square (X, 4) lie between -2
and 2. If xis further constrained to be either a positive number
or a negative number, as in

?- range (_X,) ,

square (_X, 4),
(_X >= 0; X =< 0),
print_interval(_X).

the range of X narrows to the point interval [2 . 0, 2 . 0 0 0 l] and
backtrackingfor an alternative solution narrows x to the point
(-2.0001, -2.000]. Notethatanattempttonar:rowthe

interval x to between O and 1 fails

?- range (_X,) ,
square(_ X, 4),
_x >= o,

X =< 1.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 159

Now if we use this square relation with a Y value that lies in the
range [3, 4 J rather than on the point [4 ,- 4 J ,

?- range (_X, _),
range(_ Y, [3, 4 J) ,
square (_X, _Y),
print_interval(_X).

we see that the range of solutions for xis still between -2 and 2.

-2 -1.0

y

1 .0
-2.0

· ..• 0

range(_X,), range(_Y, [3, 4)), square(_X, _Y)

However, the solutions that lie in this interval are not point
intervals, but rather, subranges of [-2, 2]. If xis again
constrained to be alternately positive and negative

?- range(_X,),
range (_ Y, [3, 4 J) ,
square (_X, _Y),
(_X >= 0; _X =< 0),
print_interval(_X).

BNR Prolog User Guide

160 Part Ill: Arithmetic

note that the range of x has narrowed not to a point but to the
intervals [1. 7 3, 2] and [-2, -1. 7 3] which are the positive
and negative interval roots of the interval [3, 4].

Magnetism Problem

A more complex example comes from the theory of
ferromagnetism. The magnetization, M, of a ferromagnet
composed of N atoms with spin 1 / 2 and magnetic moment Mu can
be described by the equation

M = N *Mu* tanh(Mu* B / k * T)

where k is Boltzmann's constant, Tis the temperature and in the
mean field approximation, B = Lambda * M for some unknown
Lambda. From the definitions

m M I (N * Mu)
t = k * T / (N * (Mu** 2) * Lambda)

the reduced equation

m = tanh(m / t)

results. The Prolog program for this is simply

magnetization(_m, _t)
_m > 0,
_t > o,
tanh(_m / _t, _m).

A Prolog definition for tanh is

tanh(_X, _Y) :-
_Y == (exp(_X) - exp(-_X)) / (exp(_X) + exp(-_X)).

but this is somewhat inefficient, both because it performs several
transcendental evaluations, and because there are unnecessary
occurrences of x in the expression. In addition, the hyperbolic
arctangent is known to always be in ranges between [-1, 1] , so
a redundant condition, range (Y, [-1, 1]) , can be added to
help in cases when the program is being used backwards.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 161

A better version of tanh is :

tanh(_X, _Y) :-
range (_Y, [-1, 1)),

range (_W,_),

W exp(-2 * _X),
_ Y == (1 - _ W) / (1 + _ W) •

An example query is:

range(_rn, [0.001,1)),
range(_t, [0.5, 0.55)),
rnagnetization(_rn, _t),
nl, print_interval(_rn).

[0.93552, 0.95751).
YES

Equation Solving

Although some equations can be solved using only narrowing as
in the above examples, most require the use of additional
techniques. The inference mechanism for intervals is not an
equation solver, and it is not sufficient on its own to solve even
simple sets of linear equations unless they are in "triangular
form".

For example the equations

A - B 1
A + B 3

which have the unique solutions A = 2 and B = 1 are not
solved in interval arithmetic if the question is simply:

?- range (_A,) ,
range(_B,),
A - B = 1,
A+ B = 3,

nl, write_intervals(_A, _B).

With this question alone, the ranges of A and B are correctly
constrained by the equations but neither equatwn by itself is

BNR Prolog User Guide

162 Part Ill: Arithmetic

sufficient to narrow the intervals further. The system is not
designed to detect the fact that the two equations can be reduced
to:

A B + 1
A + B 3

from which a term substitution yields

B + 1 + B = 3

which can be solved for B (the Gaussian elimination technique).
This type of technique is applied automatically in systems that
specialize in linear systems, but it is not effective for general
systems of equations and inequalities involving nonlinear or
nonfunctional relations.

The following section shows the development of the equation
solving predicate solve, which can be used to systematically
solve such general nonlinear sets of equations and inequalities.
In situations where the problems are of a form where
conventional solution techniques can be used, they will usually
be more efficient than this totally general purpose technique.

split

A general way to find the roots of an equation is to systematically
split the interval containing them with the predicate split 1.

splitl(_Range) :-
_Mid is midpoint(_Range),
(_Range=< Mid; _Range>= Mid).

The interval Range is narrowed to the bottom half by
Range =< -Mid, and upon backtracking, Range is narrowed to

the upper half by the alternative Range >~ Mid. With this,
both solutions for square can be obtained by backtracking,

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 163

as in the query:

?- range (_X,) ,
range(_Y, [3, 4]),
square (_X, _Y),
splitl (_X),
nl, print_interval(_X).

In most cases, an equation with multiple solutions, such as the
square program, only constrains an indefinite interval to be in
the range where all the solutions lie. To get each solution
separately, an attempt must be made to subdivide the interval
result into subranges with a predicate like split 1.

Of the two major limitations of split 1, the most noticeable is
that it partitions an interval into only two subranges. splitl
would be more useful if it could subdivide an interval into an
arbitrary number of subranges using a recursive procedure, as
in:

split2(0, _Range) :- ! .

split2(_Depth, Range) :-
D1 is _Depth - 1, % decrement depth

_Mid is midpoint(_Range),
(_Range=< _Mid; % narrow UPPER bound or
_Range>= _Mid), % narrow LOWER bound
split2(_D1, _Range). % recurse

The split2 predicate has an argument to control the depth of
recursion. At each level, Range is split one more time, first to
the lower half of its range-:- or if that fails, to the upper half.

The second limitation of splitl (inherited by split2) is that it
subdivides the interval into alternative subintervals to the left or
to the right of the midpoint of Range. This subdivision is not an
optimal one, since there may be more potential solutions in the
one half of Range than in the other. Although the alternative
subintervals created by the use of midpoint contain the same
number of real numbers, they usually do not contain the same
number of floating point numbers.

BNR Prolog User Guide

164 Part Ill: Arithmetic

median

Since floats are represented as binary numbers, there are as
many floating point numbers between 512 and 1024 as there are
between 1024 and 2048. One quarter of all floats lie between O and
1. The predicate median can be used to divide the intervals into
two subintervals containing the same number of floats.

The median of an interval not containing O is approximately the
square root of the product of its end points. Thus,

?- range (_I, [512, 2048]),
_Mis median(_I).

binds M to 10 2 4 . O whereas

?- range(_I, [512, 2048]),
_Mis midpoint(I).

binds M to 1280. 0. If an interval I contains the point 0 (that
is has a negative lower bound and a positive upper bound), the
median of I is defined to be 0. Because intervals can be more
precise than floats, median fails if the interval is too small to
contain a floating point value.

A predicate like split, if defined using median, always first
subdivides an interval into its negative and positive alternatives.
To make split more efficient, substitute the median function for
midpoint as follows:

split(0, _Range) :- ! .
split(_Depth, _Range) :

D1 is _Depth - 1,
_Mid is median(_Range),
(_Range=< _Mid; _Range>= _Mid),
split(_D1, _Range).

There are several limitations to split that have not yet been
discussed. If, for example, the median of the interval being split
is a solution, we might want to stop the splitting process so as not
to subdivide the interval. Heuristic refinements such as this are
built into the provided solve predicate.

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 165

solve

The predicate solve should be thought of as a control construct
that systematically attempts to narrow intervals. Backtracking
through solve produces alternative narrowings for intervals
that have been constrained by a network of arithmetic
constraints.

The query:

?- range(_A,),
range(_B,),

A - B = 1,
A+ B = 3,

solve (_A),
nl,write_intervals(_A, _B).

produces ranges for A and B, and the exact solutions are
contained within those ranges. Note that narrowing A
automatically narrows _ B as a result of the constraints imposed
by the equations.

solve is not an efficient solution technique for this problem,
which can be more easily solved in other, less general ways.
However, consider the problem of finding roots for the
polynomial equation

35 * X ** 256 - 14 * X ** 17 + X = 0

in the interval [0, 1] . The appropriate query is then simply

?- range (_X, [0, 1)),
0 == 35 * X ** 256 - 14 * X ** 17 + _X,
solve (_X),
nl, print_interval(_X).

[0.0,0.0)
[0.84794, 0.84795)
[0.99584, 0.99585)
YES

This problem is considerably harder to solve by other methods.

BNR Prolog User Guide

166 Part Ill: Arithmetic

Note that when using solve, failure implies that no solutions
exist in the initial ranges, whereas success only implies that
there may be solutions in the final ranges. The solve predicate
is used to narrow intervals that have been constrained by sets of
simultaneous equations and inequalities, both linear and
nonlinear. Simultaneous equations may be arbitrarily complex,
because solve is an algorithm (written in Prolog) for searching
subintervals that satisfy the constraints imposed by the
equations.

accumulate

Certain common problems in mathematics normally require the
use of recursion in Prolog. This can be a nuisance when using
intervals, since it requires that each level of the recursion set up
its own copy of the system of constraint equations. Recursion
can be avoided in many cases by using the built-in predicate
accumulate, which enables the transfer of interval values from
one alternative branch of a computation to another. Such an
operation is technically a side effect, producing changes not
undone by backtracking, and therefore must be used with care.
The predicate

accumulate(_Xin, Exp)

where Xin is an interval and Exp is an arithmetic expression,
evaluates Exp and adds the result to Xin. Since the value of

Xin is changed by the operation, notmerely narrowed, it should
not be constrained by any equations. There is no flow of
information into any intervals used in_ Exp.

The use of accumulate is best clarified by examination of several
typical examples. One use of accumulate is to calculate the sum
of a set of numeric values given by a generator, as in

total(_Var,_Number_generator, _Total) :-
var(_Total), % convert Var to an interval
range (_Total, [0, OJ), % with initial value [O, OJ
foreach(_Number_generator do

accumulate(_Total, _Var)).

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 167

An example which sums a list:

: - total (_X, member (_X, [1, 1 / 2, 1 / 3, 1 / 4)), Sum),
nl, print_interval(_Sum).

[2. 0833, 2. 0834)
YES

The sum is based on the existing interval ranges at the time
total is called. Therefore, it is not automatically updated by
subsequent narrowing.

Another use for accumulate is as an efficient generator for
subdividing intervals:

scan(_X, _XO, _Dx) :
interval(_X, _XO, _Dx),
range(_Dd,),
_Dd is delta(_Dx),
repeat,

X == XO+ Dx ->
accumulate(_XO, _Dd)
failexit(scan).

% _Xis [last,curr)
% update last
% exit when outside X

Here xis an interval that may or may not be constrained, XO is
an unconstrained "state" variable, and Ox is an interval With a
lower bound of 0. When accumulate is-executed as a generator,

Xis successively narrowed to nonoverlapping subintervals of
size delta (Ox). The generator terminates as soon as x fails to
narrow, for example, when it reaches the end of its range or
when it becomes inconsistent with its constraints.

A predicate such as scan is commonly used in graph plotting
routines. Consider:

plot(_Name, _Y, _x, _Ddx) :-
make_graph(_Name, [GXlo, GXhi), [GYlo, GYhi]),
normalize (_X, _Nx, [GXlo, GXhi], 1),
normalize(_Y, _Ny, [GYlo, GYhi), -1),
range(_Dx, [O, _Ddx)), % make step interval
range(_NxO, [Xlo, Xlo)), % make initial interval
foreach(scan(_Nx, _NxO, _Dx) do

graph(_Name, _Nx, _Ny)).

BNR Prolog User Guide

168 Part Ill: Arithmetic

graph(_W, _x, _Y) :
dograf(_W,

[fillpat(hollow),rectabs(_X, _Y, _Xl, _Yl)]).

where Name is the title of the graph window, x and Y are the
independent and dependent variables respect:fvely, and Ddx is
the (floating point) step size. The predicate make graph (not
listed here) opens the graphics window, properly-positioned and
sized, and returns ranges scaled in terms of graphics
coordinates. The intervals X and Y are assumed to be
constrained before calling plot. Calls to normalize create
interval variables that are scaled to fit the window, and couples
them to x and Y.

norrnalize(_X, _Nx, [_Lb, _Ub], _Sgn)
range(_Nx, [_Lb, _Ubl),
range (_X, [_Lbx,]) ,

Mx is Sgn * delta(_Nx) / delta(_X),
_Sgn > 0 ->

Ox is Lb - Mx * Lbx;
Ox is Ub - Mx * _Lbx,

Nx == Ox+ Mx * X.

scan is used to generate the sequence of subintervals, using the
narrowed Nx and Ny to plot the result. The following are
pictures ofrelations plotted using plot:

if
-ll

X==Y*Y

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 169

Y==X *X

X*X+Y*Y=l

Another use of both accumulate and scan is the computation of
generalized definite integrals, or quadratures, as intervals. For
example, in the predicate

def_integral(_Y, _YO, _X, _Dx)
interval(_Y, _YO, _X, _Dx),
range (_X, [_Lb,]) ,
range (_XO, _),

XO== _Lb,

% check parameters
% get lower bound

% set up for scan
foreach(scan(_X, _XO, _Dx) do

accumulate(_YO, Y * delta(_X))).

BNR Prolog User Guide

170 Part 111: Arithmetic

X and Y denote the independent and dependent variables
respectively, Dx the step size, and YO the computed value of the
integral. The variable YO is an interval which may be assumed
to have an initial value of 0, and a final value that is an estimate
of the integral for Y with respect to x. As in the plotting
example, explicit knowledge of the relation between x and Y is
not required by def_ integral. - -

This algorithm corresponds to the simplest possible conventional
algorithm, and is not especially efficient. However, unlike its
conventional counterpart, it computes strict conservative
estimates of both lower and upper bounds for the integral. Unlike
more sophisticated techniques it does not place restrictions on
the class of relations it can deal with; the relation between _X
and _y need not have a classical integral at all and need not
even be a function. More efficient techniques can be devised for
more restricted problems in which this generality is not needed.

/* example of def_integral predicate*/

integrate_normal(Interval, _Step) :-
range (_X, _Interval), range (_Dx, [0, _Step]),
range(_ Y, _) , range (_F, [0, 0]) ,
_N is sqrt(2 * pi),
_Y == exp(-0.5 * _x ** 2) / _N,
def_integral(_Y, _F, _X, _Dx),
nl, print_interval(_F).

% between mean and standard deviation
:- integrate_normal([0, 1], 0.1).
[0. 33329, 0. 349]
YES

% between mean and 3 sigma, that is almost 0.5
:- integrate_normal([0, 3], 0.1).
[0.47891, 0,51837]
YES

% decreasing step size increases accuracy up to a point
:- integrate_normal([0, 3], 0.01).
[0.49667, 0.50063]
YES

BNR Prolog User Guide

Chapter 12 Relational Arithmetic 171

Summary

As a summary of the relational arithmetic system, the following
table relates analogous features an properties of interval
arithmetic and pure Prolog.

Interval Arithmetic

relational
narrowing
interval
integer, float
expressions
==, =<, >=
, (and)

Features

Pure Prolog

relational
instantiation
variable
ground term
goals

, (and)
; (or) ; (or)

range,delta,median,midpoint meta-primitives (var ..)

Interval Arithmetic

idempotent
inclusion isotone
quasi-persistent

Properties

Pure Prolog

idempotent
monotone
persistent

BNR Prolog User Guide

Part IV Programming with Side Effects 173

~@[fU □W
~[f@® [f@[M} [M} □ rJu® w□UllU ®□@l@

~uu@@U@

BNR Prolog User Guide

174 Part IV Programming with Side Effects

Side effects are actions that are not undone on backtracking and
therefore violate the logic programming paradigm. Goals which
produce side effects often do not commute. Any predicate defined
using side effects must be interpreted procedurally, and
programs dependent on side effects can be hard to read and
debug. Nonetheless, side effects provide practical solutions to
many programming and efficiency issues. If used with care and
properly contained, many of the undesirable characteristics of
side effects can be minimized.

One of the more obvious uses of side effects is input and output of
text data. It is hard to imagine a practical Prolog program
which does not interact with the user and/or the file system to
some extent. Other parts of the Prolog system subject to side
effects include the knowledge base (programs which "learn"
during their execution need to modify their program semantics)
and the state space (an internal database provided to separate
state information from program information). As the following
diagram indicates, data flows between these "storage"
mechanisms and the current execution state (state of variable
bindings) by means of side effects.

BNR Prolog User Guide

Part IV Programming with Side Effects 175

File
System

1111111111 11
111111111111111 111111111111111

,,,,,111111 %1111111

,,,,,,,,,,,,, --------- 111111111,,,

,,,,, , ... _ ... r----::----,... ,,,,

111 ,111 ~~~~~ Contexts 1111
1111

11
1

~---- -_ -_ -_ I
11---...... · 11
11111 State 1111

11111 Space • 111 11
1111111111 Clause S ace 1111111111

111 11 BNR Prolog 11111111111
1111111

1111111111111 Program 11111111111111
111 1111

Man/Machine
l!D\\ ~ Interface

The next chapters expand on support for input/output,
accessing/modifying the knowledge base and the state space,s
and support for the Macintosh user interface.

BNR Prolog User Guide

Chapter 13 Text Input and Output 177

Chapter 13
Text Input and Output

swrite

Global
Stack

Contexts

. . . read, ... 1111 ,,,
Clause Space

""'"''''' "'""'""" ____;.;.;.:.w.w-111111111111111111111111111111111111111

•- - Man/Machine
iffl ~ Interface

,,,,,111
,,,,,,,,,

,11

One of the most frequent uses of side effects is the transfer of text
data into and out of a program. In Prolog, input and output (I/0)
predicates succeed by introducing side effects in their targets. If
output is generated, it is not erased on backtracking. Similarly,
if input is requested on a failing branch of a query, the position in
the data at which the last read occurred is not restored on
backtracking to allow a reread. Programs that are primarily
concerned with processing external data are procedural in style,
in contrast with the declarative style of logic programming
programs.

BNR Prolog User Guide

178 Part IV Programming with Side Effects

Streams

The targets for input and output predicates are streams and
symbols. With a few exceptions, streams and symbols are used
identically for input and output. Streams are essentially paths to
external objects that are logically equivalent to a sequence of
Prolog terms. Examples of such objects are text files, text
windows and pipes.

A text window can be considered an open text file. Opening a
window opens the corresponding file and provides a view of the
file contents, automatically making the name of the text window
the same as that of the file to which it corresponds. Input and
output use the contents of the window in preference to the file,
since the window is the most recent version of the file.

A pipe is a stream implemented as a FIFO (first in, first out)
buffer in memory. Reading from a pipe succeeds only if valid
text was previously written to the pipe. Pipes are always open for
input and output.

open

Before any stream input or output can occur, a stream must be
opened. This requires the name of the file and the mode in
which the file is to be opened. If open is successful, a unique
integer identifier is assigned to the stream for use with other I/O
predicates. The various permissible modes are shown in the
following examples:

?- open(_stream_id, _file_name, read_only, 0).
% an input-only stream for a file

?- open (__ stream_id, _file_name, read_write, 0) .
% a read and write stream for a file

?- open(_stream_id, _window_name, read_window, 0).
% an input-only stream for a window

?- open(_stream_id, _window_name, read_write_window, 0).
% a read and write stream for a window

BNR Prolog User Guide

Chapter 13 Text Input and Output 179

?- open(_stream_id, _any_name, read_write__pipe, 0).
% a read and write stream which is a pipe

(The use of O as the result code argument is to force failure if the
open operation fails. Handling I/O errors is discussed later.)

At any one time, in addition to the two default I/O streams, there
may be at most ten streams open. Only one stream may be open
at a time for any given file, thus preserving a consistent single
version of a window or a file.

c1ose

To avoid running out of streams, they should be closed when no
longer needed, using the close predicate:

close(_stream_id, _error_code).

Closing the stream for a window does not preserve any changes
in the associated file. The changes to a window are saved only by
using one of the save commands in the File menu, or by calling
the savetext predicate.

stream

To verify that a particular stream is open, or to generate the list
of all open streams, the stream predicate may be used:

stream(_stream_id, _full_name, _mode).

Stream Pointers

The stream pointer represents the position in the file at which
the next read or write is to occur. The first character in a stream
corresponds to position 0, the second character position 1 and so
on. When a stream is opened, its stream pointer is at position 0.
Reading from a stream progresses from beginning to end,
starting at the current stream pointer. Once the read is
satisfied, the stream pointer is relocated one position beyond the
last character read. Writing also progresses from the beginning

BNR Prolog User Guide

180 Part IV Programming with Side Effects

of the stream onwards. When the write is complete the stream
pointer is positioned after the last character written.

A special value for the stream pointer is the symbol
end of file.

at, seek

at and seek can be used to support random access within
streams. The predicate at (Stream ID, Ptr) obtains the
current pointer position. seek (St ream ID' Ptr) may be used
to position the stream pointer. - - -

Use of at and seek are demonstrated in the following examples.
peek char is a predicate which 'looks ahead' at the next
character in the stream. Such a predicate is often useful in
parsing systems.

% peeks at next character in stream
peek_char(_Stream, _CH) ·

at(_Stream, _N),
get_char (_CH),
seek(_Stream, _N).

logical read is a read predicate which undoes the effect of the
read on backtracking.

% undoes read on backtracking
logical_read(_Stream, _X)

at (_Stream, _N),
sread(_Stream, _X)
[seek(_Stream, _N), fail].

Recall that opening any stream sets the pointer at the start of the
stream. Data can be appended to a read/write stream if the
stream pointer is first moved to the end as in the following
sequence of goals:

% move pointer to end so new data follows old user code
open(_stream_id, filename, read_write, 0),
seek(stream_id, end_of_file),
append_data(stream_id).

BNR Prolog User Guide

Chapter 13 Text Input and Output 181

set end of fi1e

There are cases when new data should overwrite the old. This
can be done by using the predicate set end of file to position
the end of file at the current stream pornter, after writing out
the changed text. A segment of code that implements this is

write_revision(_stream_id),
set_end_of_file(_stream_id),
close(_stream_id, 0)

% user code

Unlike the stream pointer for a file, which moves through the file
with subsequent reads or writes, the stream pointer for a pipe is
always at the beginning, position 0. Advancing the stream
pointer discards data up to the new pointer position. Setting the
end of file marker for a pipe discards any remaining data in the
pipe.

Data is always read from the beginning and always written at
the end of a pipe. If there is not enough data in the pipe for a
read to succeed, the read fails and whatever data exists is
preserved. Once more data has been written to the pipe, a
subsequent read succeeds. After a read, only the data
representing the object read is discarded.

Closing a pipe also discards any remaining data.

Default 1/0 Streams

Two default streams, one for input and one for output, are
automatically opened when BNR Prolog is launched.

The default input stream (stream 0) is a pipe used to acquire
interactive input from the user through the currently active
window. A pipe is used so that syntax errors resulting from an
incomplete query or assertion can be handled.

The default output stream (stream 1) is the Console, a read/write
text window. A distinct feature of this window is that all text is
output to the end of the window. This aids in keeping a log of
interactive queries and responses.

BNR Prolog User Guide

182 Part IV Programming with Side Effects

The format of some predicates is such that if a stream identifier
is not specified the appropriate default I/0 stream is used.

Detecting 1/0 Errors

Four of the I/0 predicates, close, get_term, open and put_term,
return integer result codes for the corresponding operation.
Assuming the arguments are of the correct number and type,
these predicates always succeed so the result codes can be
returned as the last argument. Each code has a unique and
fixed interpretation. (See the BNR Prolog Reference Manual for
further information.)

A result of O means the operation was successful. Codes less
than O indicate the operation is invalid, either due to some
operating system detected error (- 4 3 translates as an invalid file
name) or restrictions within the Prolog system (-2 0 0 translates
as maximum number of streams exceeded). Codes greater than
0 are associated with syntax errors (12 translates as unmatched
right parenthesis).

If the goal is intended to fail when the operation fails, the call to
one of these predicates should have the last argument bound to
the value O.

Read and Write Predicates

Predicates which read terms assume that the input stream is
structured as a sequence of one or more Prolog terms. Each
term must be followed by a period"." and either a space or a
newline character. For any other target structure, for example
English sentences, the built-in predicates for reading characters
must be used in combination with user defined predicates to
inspect the structure of the input.

get_term

The basic input predicate, which reads just one term, is:

?- get_term(_stream_id, _term, _error).

BNR Prolog User Guide

Chapter 13 Text Input and Output 183

get term is the only stream input predicate that returns an
error code. If the code argument is a variable, the predicate
always succeeds regardless of whether the actual read succeeds.
If the error code is 0, get term only succeeds if the read
operation succeeds. -

One of the more important syntax error codes is 2, which
signifies that the term read is incomplete. When get term is
used with pipes, this code permits synchronization between
readers and writers of pipes.

sread, read

The read and sread predicates can read any number of terms
from symbols, streams, or pipes. For example:

?- sread(_stream_id, _terml, _term2, _term3).
% read three terms

The predicates to read terms can be used to convert a symbol into
a Prolog term. For example,

?- sread(' [sym, two(\'in quotes\', _var), 5]. ',_list).
?- sread('[sym, two(\'in quotes\', _var), 5].',

[sym, two ('in quotes', _var), 5]).
YES

unifies list with a three element list, consisting of a symbol, a
structure, and an integer. (sread fails if more than one term is
read from a symbol.)

The predicate read is identical to sread, except that no target is
specified. The read is performed on the default input stream.

swrite, write, swriteq, writeq

The two primary write predicates, swrite and swriteq, write to
streams, or symbols. The predicates write and writeq are
identical to swrite and swriteq, respectively, except these
predicates target the default input stream, and thus require no
stream identifier. Any number of terms may be written, but no

BNR Prolog User Guide

184 Part IV Programming with Side Effects

special punctuation(",", for example) is output between terms.
Structures and lists are written with the appropriate bracketing
and with commas between elements. Expressions are output

· according to operator declarations, with blanks separating
operators from their arguments, and parentheses to show
grouping. The functorial form of operator expressions never
appears. For example, the term

'is'(_x, '+'(_y, _z))

is always output as

(_x is (_y + _z))

Unlike swrite, swriteq delimits special symbols with single
quote characters, and always writes a blank character after
every term. Terms written using swriteq are in a format that
is acceptable to the read predicates, save for the possible missing
trailing punctuation. The same cannot be said for a term
written by swrite. Consider:

:- swrite(l, 'The', 'cat in the hat', came, back).
Thecat in the hatcameback

:- swriteq(l, 'The', 'cat in the hat', came, back).
'The' 'cat in the hat' came back

Just as sread can convert a symbol into a Prolog term, swrite
and swriteq can convert a term into a symbol by directing their
output to a symbol rather than a stream. The symbol is unified
with the first argument, usually an unbound variable.

Because variable names are preserved with clause definitions
and queries, the write predicates access and output variables by
name whenever possible. Variable names are written with a
leading underscore, " ", to avoid confusion with capitalized
symbols. If a term has different variables with the same name, a
numeric suffix is added to the name to distinguish the variables.
This is suffix convention applies only if the variables appear in
the same term.

BNR Prolog User Guide

Given the fact

info(fact(_M, _N)).

Chapter 13 Text Input and Output 185

note the difference in output for the following queries:

/* writing two terms
variables are not distinguished*/

·- info(X), info(Y), nl, writeq(X, Y).
fact(_M,_N) fact(_M, _N)

/* writing one term, a list
variables are distinguished by number suffixes*/

· - info (X), info (Y), nl, writeq ([X, Y]) .
[fact(_M,_N), fact(_M_l, _N_l)]

swrite can also be used to implement a deterministic variation
of the co neat predicate by specifying the target as a symbol. The
following queries are equivalent:

?- swrite(_symbol, first_symbol, second_symbol).

?- concat(first_symbol, second_symbol, _symbol).

Because swrite can write any number of terms, it can be
considered a variadic concat predicate. While concat is
restricted to symbols, swrite and swriteq can concatenate any
number of any type of term into one symbol.

put_term

put term, which can write to streams or symbols, writes a
single term with trailing punctuation, such that the output may
be immediately read by a predicate that reads terms. This is the
only output predicate that returns an error code.

:- nl, put_term(l, ['First', _x: [fast, slow]], 0).
['First', (_x : [fast, slow])] .
YES

BNR Prolog User Guide

186 Part IV Programming with Side Effects

print, portray

The print predicate outputs a single term in accordance with the
specification provided by the predicate portray. print, with one
argument, writes the term to the default output stream. With
two arguments, it writes the second argument to the stream
specified by the first argument.

Any user implementation of portray must have two arguments,
a stream identifier and the term to be written. If there is no user
version of portray, print defaults to a version that specifies the
format of swriteq and is also capable of writing a nonprintable
term (either a cyclic or looped structure) in a printable form. For
example:

:- _X = fred(2, george(_X)), nl, print(p(_X)).
(p(1) where [(1 = fred(2, george(1)))])
YES

get_char, put_char

A character is the smallest unit of data that can be read or
written. However, as character is not a valid term type,
characters are actually treated as symbols consisting of only one
character. get char (stream id, char} reads a single
character symbol from -the specTfied stream;
put char (stream id, char} writes a single character
symbol to the specified stream. The stream argument may be
omitted if the target is the default stream.

nl.

A character or term following a newline character is shown at
the beginning of the next line. Since this is a very common
output format, the predicate nl (equivalent to put_char ('\n'}) is
provided. A variation which takes a single argument specifying
the target stream is also provided.

BNR Prolog User Guide

Chapter 13 Text Input and Output 187

readln

Reading a line of text is equivalent to reading a sequence of
characters up to and including the next newline character, then
returning the characters in a symbol without the newline. This
action is performed by the readln predicate, which is provided
primarily to optimize the processing of free form text.
readln (stream id, symbol) unifies symbol with next the
line of text in the specified stream; stream id can be omitted if
the default input stream is to be used. -

In summary, predicates that employ side effects are essential in
implementing practical Prolog programs. Text input and output
predicates comprise the first set of such predicates, and are
provided in some form in all Prolog systems. The next chapter
discusses predicates affecting the internal structure of the
program contained in the knowledge base.

BNR Prolog User Guide

Chapter 14 The Knowledge Base 189

Chapter 14
The Knowledge Base

Unlike conventional languages, Prolog has traditionally
permitted modification of the knowledge base (program) during
execution. This is achieved through use of predicates such as
assert and retract, which act on the knowledge base by means
of side effects.

The BNR Prolog knowledge base is divided into modules called
contexts. For large scale programming, some support for
modularity is essential. On the pragmatic side, modules are
units of software used for development and version control, and
are the basis upon which software libraries are formed. Since
the file is the most convenient unit of data storage and control,

BNR Prolog User Guide

190 Part IV: Programming with Side Effects

BNR Prolog uses a one to one correspondence between files and
modules.

Several considerations affect the possible forms of
modularization. Modules should be as independent as possible,
since dependencies between different modules create complex
administrative problems and compromise independent
development and library formation. In systems supporting
compilation, these problems are magnified since both compile
time and run time dependencies must be managed consistently.

Modules should encourage information hiding. The proper use
of a module should require much less information than is
needed to duplicate its functionality. Further, the number of
transformations (compiling, for example) that preserve a
modules semantics should be maximized. In BNR Prolog,
information hiding is provided by local names and state spaces.

Since correctness often depends on the enforcement of a
controlled interface, mechanisms are provided to prevent the
modification of predicate definitions.

Contexts

A module in the knowledge base has a name, can vary in size,
and is known as a context. Contexts exist in memory as a last
in, first out (LIFO) stack, called the world stack. The first
context is base which contains the definitions for the built-in
predicates. This is followed by userbase, the default user
context. One or more user contexts may follow, where the last
context loaded is the current context on the top of the stack. In
the following example, the current context is OPS, which was
created after loading the context FAMILY.

BNR Prolog User Guide

Chapter 14 The Knowledge Base 191

top of stack

OPS

FAMILY

userbase

base

Example of Clause Space

From the point of view of logic, this structure corresponds to the
notion of extensions of a formal sys tern. The con ten ts of base
above, regarded as a set of axioms and definitions, has been
extended by the addition of further axioms and definitions in the
other contexts. In this conceptual model, removing the axioms
of an extension also removes all consequences of those axioms
and restores the knowledge base to the state it was in prior to the
extension.

Each context has a local state space in which to keep private state
information. Local state spaces are discussed in the chapter
"State Spaces".

Creating and Removing Contexts

Contexts are usually created on the stack by loading a specified
file. For example, the query

?- load_context('FAMILY').

creates a new context with the name FAMILY that contains the
clauses read from the file FAMILY. If the new context has the
same source file as one that already exists on the stack, the
predicate load_ context has no effect. (The load commands in
the ConteHts menu do a reload if the context already exists.)

BNR Prolog User Guide

192 Part IV: Programming with Side Effects

Contexts not associated with files can also be created on the stack
by using the enter context predicate. For example, the query

?- enter_context('OPS').

creates a new empty context named OPS, which has no related
file.

Context files contain none of the "directives" that are found in
some Prolog systems. In BNR Prolog, operator definitions are
handled simply as facts, and initialization is handled by means
of the $initialization predicate. Whenever a file is loaded,
this predicate is automatically executed once loading is complete.
Any necessary initialization, including loading other contexts,
can be specified in the body of $initialization clauses.

A binary context image is created for a source file and stored in
its resource fork the first time the file is loaded from disk. Until
the disk file is changed, whenever a call is made to load that file,
the binary image is loaded instead of reparsing the text. There
are no semantic differences between the source and its binary
image, but the binary image loads considerably faster. Open text
windows, which generally contain files undergoing significant
(but uncommitted) changes, are always parsed each time; binary
images are not constructed.

If the predicate reload context is called to reload a specific file,
all contexts are poppedfrom the stack, starting with the current
context down to the one specified. The popped contexts are then
reloaded from open text windows or files, starting with the
specified file. Open text windows are always checked first when
reloading a file. Therefore, any changes to open files are
effective with the reload. Since reload information is taken from
files or open windows, any dynamic changes made either
interactively or from programs, for example asserts, are
removed. If a context on the stack was created with
enter context, it cannot be reloaded from a file. In such a
case, reloading of that context is omitted.

BNR Prolog User Guide

Chapter 14 The Knowledge Base 193

A context is unloaded by exiting, which removes it from the
stack. For example, the query

?- exit_context('FAMILY').

removes FAMILY. If the specified context is not at the top of the
stack, all contexts above it are removed as well. If a nonexistent
context is specified, there is no effect on the stack.

An exit context restores the clause space to the state that
existed at the time of the corresponding enter context or
load context. In particular, all clause assertions and all
operator definitions made in the interim are undone by the exit,
and their storage is recovered. If any of the removed code is still
being executed, or if there are any outstanding references to
anything (including symbols) in a removed context, then
"dangling reference" errors may be generated. For this reason,
programs using exit context or reload context must
ensure that there are-no dependencies on the material being
deleted. (The global state space may be used as a temporary
storage while the context stack is changing. See the chapter
"State Spaces")

Symbols and Clauses in Contexts

Each context consists of a set of clauses. Symbols beginning with
"$", called local symbols, are scoped to the context, so $fred in
one context is distinct from $fred in any other context. Thus
several different contexts can each have their own distinct
semantics for the same symbol. The use of local symbols
minimizes the problem of name conflicts in contexts created by
different programmers.

Local names entering the system for the first time always go into
the current context. Thus, although a local symbol can be output
from any context, the same abstract symbol can only be input
into the current context. This feature can be applied to
maintaining a symbol table for a scoped language, or in
applications where it is necessary to keep a set of object language
symbols distinct from the metalanguage symbols of Prolog.

BNR Prolog User Guide

194 Part IV: Programming with Side Effects

If local symbols are exported from a context at runtime, it is easy
to get confused as to which symbols are really the same if only
the name of the symbol is output. For example, it is perfectly
possible to have two distinct, nonunifiable symbols that both print
as $fred. If two contexts are loaded, where p ($fred) appears in
one context, and q ($fred) appears in another, then

?- p(_X), q(_Y).

?- p($fred), q($fred)
YES

but

?- p(_X), q(_X).

NO

All symbols except those that start with"$" are global to the
system. Global name spaces may require some manual
supervision to avoid unintended name clashes. Because global
symbols have no ambiguity between name and symbol, their
names can be freely input and output.

The scoping rules for the clauses in contexts vary somewhat
from the rules for procedures within modules in other
programming languages. Clauses are defined local to a context
by using a local name. Clauses with the same local name may
exist in different contexts and be totally independent. An
example is the $initialization predicate mentioned above,
which may be independently defined in every context.

Local predicates can only be called or referenced directly in the
context in which they are defined. Thus, local predicates can be
written (and compiled) with full knowledge of how they are to be
used, which generally allows them to be written in a more
specific and efficient manner, and with a wider range of possible
compiler optimizations.

For global predicates, clauses may exist in more than one
context. In such a case, the clauses in the more recent contexts
are tried before the clauses in earlier contexts. This is called
overloading.

BNR Prolog User Guide

Chapter 14 The Knowledge Base 195

A common use for overloading is to provide general clause
definitions in lower contexts, and then overload these with more
specific definitions in later contexts. When this organization is
used, the lower contexts contain highly generalized abstract
descriptions, which are particularized to restricted problem
domains by overloading. Thus, a possible organization for a
diagnostic expert system might be

current context

tentative hypotheses

specific problem symptoms

site specific knowledge

generic predicates for the problem domain

the abstract inference model

Overloading of global definitions can be prevented by using the
close definition predicate. A closed definition cannot be
modified by later context loads or by program execution. It is the
responsibility of the provider to close a definition if it is desirable
to prevent overloading. A convenient place to close definitions is
in the $initialization predicate of the defining context,
although closing is possible at any time after the definition has
been loaded.

The order in which contexts are loaded is generally not
significant. One exception occurs when overloading is being
used, in which case the proper order is determined by the
desired order of predicate overloading. A second exception
occurs when using local state spaces to hold local names from
other contexts, in which case the semantics of local names may
affect the order. (See the chapter "State Spaces".)

BNR Prolog User Guide

196 Part IV: Programming with Side Effects

Accessing Predicate Definitions

The definitions of predicates can easily be accessed from
programs by using either the definition or clause predicates.

definition, clause

definition uses the canonical form of clauses, as in the query

?- definition(_Head :- _Body, _Context).

Head is always a structure and Body is a list or variable. If the
=Context parameter is instantiated, it causes the selection of
clauses to be restricted to the specified context. Otherwise, it
returns the context in which each particular clause occurs.

The use of the canonical clause form simplifies the retrieval of
clauses which may have been originally entered in several
different (but equivalent) forms. Since clause bodies are
returned as lists, they may be manipulated by the usual list
utilities or directly executed if desired. For example, the
following predicate

esubset ([J ,) • % in the context OPS

esubset([_X, _Xs .. J, [X, _Ys .. J) :-
esubset(_Xs, _Ys). % in the context New OPS

esubset([_X, _Xs .. J, _Y) :-
member(_X, _Y), esubset(_Xs, _Y).

% in context New OPS

can be queried to obtain all clauses,

?- definition(esubset(_A ..) ·- _B, _Context).

all clauses with two arguments,

?- definition(esubset(_Al, _A2)

all facts,

?- definition(esubset(_A ..)

BNR Prolog User Guide

_B, _Context) .

[], _Context) .

Chapter 14 The Knowledge Base 197

all clauses in context OPS,

?- definition(esubset(_A ..) :- _B, 'OPS').

and so forth. The clause predicate is similar but does not
provide context information. For example,

?- clause(esubset(_A ..) ·- _B). % all clauses
?- clause(esubset(_A ..) ·- []). % facts only

hide

The predicate hide can be used to hide a predicate so that
definition and clause do not work on it. This facility can be
used to prevent inspection of confidential algorithms.

1isting

The clauses of a predicate may also be displayed, in the order in
which they will be tried, by using the listing predicate. Listing
a predicate displays the name of the context (in comment form)
for each clause of the predicate, as well as the internal
representation of the clauses. For example, listing the predicate
father gives:

YES

listing(father).
father('Aaron', 'Adam').
father('Zachary', 'Zeke').

% Context:
% Context:

father ('Michael', 'Sue') . % Context:
father('Stephen', 'Michael').% Context:

Asserts and Retracts

"OPS"
"OPS"
"FAMILY"
"FAMILY"

assert is a predicate that adds a new clause to the knowledge
base and asserts its truth, thus authorizing its unrestricted use
in proofs. Every clause asserted is entered into the current
context, and automatically disappears when the context is
removed. retract is used to remove clauses in the current
context. Confining the effects of assert and retract to the

BNR Prolog User Guide

198 Part IV: Programming with Side Effects

current context provides a mechanism for containing knowledge
base side effects.

assert

The two natural forms of assert, called asserta and assertz,
have identical interfaces based on the canonical form of clauses.
assert a. adds a clause to the top of the clause chain for its
predicate. This is useful for overloading or extending predicate
definitions, and also for dynamic fact tables. There is no
ambiguity about its effect on concurrent executions of the
overloaded predicate: existing executions are unaffected, while
subsequent calls see the new clause.

assertz is principally used for loading clauses in the order in
which they would be entered into a context file or interactively.
When used to add facts to a dynamic predicate, assertz can be
the cause of semantic problems if the predicate is being executed
while being changed. (For this reason the assert predicate is
defined to be equivalent to asserta.) Since clauses can be added
only to the current context, if a predicate has clauses in lower
contexts, assertz is not able to add a clause at the end of the
clause chain for its predicate. (This may cause problems in
porting from systems with a flat, unstructured clause space if
there are global name clashes. To some extent these systems
can be accommodated by restricting the clause space to a single
user context.)

For example, if the current context, OPS, contains

father('Benjamin', 'Baxter').
father('William', 'Warren').

and the previously loaded context FAMILY contains

father ('Michael', 'Sue') .
father('Stephen', 'Michael').

BNR Prolog User Guide

Chapter 14 The Knowledge Base 199

and the following assertions are made

?- asserta(father('Aaron', 'Adam')).
?- assertz(father('Zachary', 'Zeke')).

a query of the predicate father causes a clause space search
resulting in the following:

?- father(_X, _Y).
?- father('Aaron', 'Adam').
?- father('Benjamin', 'Baxter').
?- father('William', 'Warren').
?- father('Zachary', 'Zeke').
?- father('Michael', 'Sue').
?- father('Stephen', 'Michael').

retract

Clauses may be removed by using retract. Like assert,
retract only applies to clauses in the current context. Because
retract uses backtracking, it can be used to remove all clauses
in the current context for the specified predicate. For example,

?- retract(father(_X ..)), fail.

or

?- foreach(retract(father(_X ..)) do true).

removes all clauses of the predicate father from the context OPS.

In summary, Prolog programs can be constructed from
independent modules stored in separate files and loaded as
contexts. Information hiding can be maximized by using
symbols and predicates local to a context. The context stack
discipline ensures that the knowledge base can be returned to a
consistent state, and provides a mechanism for the containment
of assert/retract side effects. State spaces, discussed in the
next chapter, provide an alternative storage mechanism for
Prolog data structures.

BNR Prolog User Guide

save_state

Chapter 15 State Spaces 201

Chapter 15
State Space

Contexts

Many applications require a place to store changeable data
during a computation. Traditionally in Prolog, such data has
been handled as dynamic predicates, using assert and retract.
Asserting facts in the clause space authorizes their unrestricted
use in proofs. However, it is often desirable to remember data
without committing to its truth at all. In many cases it is
desirable to be able to easily save the "state" of an application
separate from the knowledge base of the application. This is
difficult if the two are intermingled. Storage reclamation is also
a problem if data changes occur frequently.

BNR Prolog User Guide

.A

202 Part IV: Programming with Side Effects

State spaces are memory resident data bases for Prolog
structures which do not require that the data be "asserted", and
offers more flexible data management. There may be private
state spaces associated with each context, as well as a global
state space. A convenient unification based access method is
provided, similar to that used in the clause data base. This class
of storage has attributes which are midway between external
files and the knowledge base, and represents a different set of
tradooffs between accessibility, updateability, and data
independence.

The contents of each state space is a collection of Prolog
structures, grouped by functor name. Within each group, the
structures are kept as an ordered set known as the recall order.
The built-in predicates make it possible to add or remove terms
from either end of this set, scan it from either end by pattern
matching, or update it without affecting the order.

The interface to the state space is analogous to the handling of
facts in the clause space, as can be seen in the following table:

State Space

remernbera(Structure)
remernberz(_Structure)
remernber(_Structure)
forget(_Structure)
forget_all(_Structure)
forgetz(_Structure)
recall(Structure)
recallz(_Structure)
update(Strucl, Struc2)

Clause Space

asserta(_Fact)
assertz(_Fact)
assert (_Fact)
retract(_Fact)
retract_all(_Fact)

clause(_Fact)

Global State Space

The global state space is visible from all contexts. It is not
affected by loading, exiting, or reloading contexts. A global state
space is created either by a call to new state, or by the first call
to remember. Any state space is dynamically extended as

SNR. Prolog User Guide

Chapter 15 State Spaces 203

required, memory permitting. However, there is less chance of
encountering fragmentation problems if the size is preallocated.

new state

The call new state (0) discards the current global state space.
lfno state space currently exists, new_state (size} allocates
size Kbytes for use as the global state space. Thus

:- new_state(0), new_state(50).

discards the existing state space and allocates a new space of 5 0
Kbytes. The call new state (var} can be used to query the size
of the state space; _var is unified with O if no state space
currently exists.

remember, recall

The goal sequence:

remember(box(l0, 10, 20, 20, 'red)),
remember(box(30, 20, 40, 50, green)),
remember(box(60, 8 0, 70, 90, green))

stores the specified structures in the global state space. They .
may then be retrieved by a subsequent nondeterministic call of
the form:

?- recall(box(_A, B, c, _D, _Color)). -
?- recall(box(60, 80, 70, 90, green)).
?- recall(box(30, 20, 40, 50, green)).
?- recall(box(l0, 10, 20, 20, red)).

YES

Note that the terms are returned in last in, first out order.

recall works by unification and backtracking, as evidenced by:

?- recall'(box (_A, B, C, _D, green)) .

YES

?- recall(box(60, 80, 70, 90, green)).
?-recall(box(30, 20, 40, 50, green)).

BNR Prolog User Guide

1

204 Part IV: Programming with Side Effects

Since retrieval keys on the structure name and the first
argument if it is instantiated, it may be more efficient to
rearrange the order of arguments to optimize the most frequent
queries. The above example would be more efficient if Color
was the first argument in the structure box. -

recallz is similar to recall, but accesses the items in the
opposite order:

?- recallz(box(_A, _B, C, _D, green)).
?- recallz (box (30, 20, 40, 50, green)).
?- recallz(box(60, 80, 70, 90, green)).

YES

forget

forget and forgetz access the contents of the state space in a
manner similar to recall and recallz, respectively, but they
remove the items from the state space as they retrieve them. A
last in, first out stack can be implemented using remember
(which is equivalent to remembera) and forget together, or by
using rememberz and forgetz. A first in, first out queue can be
implemented with either a remember and forgetz combination,
or with rememberz and forget. For example:

enqueue(_Queue, Item) :- rememberz(_Queue(Item)).

first(_Queue, Item) :-
recall(_Queue(_V)),
I . ,
V = Item. % may fail if Item does not unify

dequeue(_Queue, Item):
forget(_Queue(_V)),
I . ,
V = Item. % may fail if Item does not unify

A common source of problems is forgetting that these operations
are nondeterministic: an unexpected failure in subsequent calls
can create a great deal of unnecessary work, or even damage the
data base in the case of the forget predicate. Such problems are
minimized by using once (forget ()) .

BNR Prolog User Guide

Chapter 15 State Spaces 205

update

The update predicate is useful for updating state space items
without affecting their order. The call update (Old term,

New term) replaces the first occurrence of _Old term with
~ew -term in the same position in the recall order, but restores
the onginal term on backtracking. A sequence like

[update(box(_A, _B, _C, red), box(_A, _B, _c, yellow)),
update(box(_A, _B, _C, green), box(40, 40, 50, green)),
cut] % commit changes

then acts as a transaction which is committed by the cut. In this
transaction, either all or none of the updates in the sequence take
place. Careful use of such transaction sequences can help
maintain the internal consistency of the data base.

In many instances, the new structure must be computed from
the old structure. In the following example, a message is
addressed to an object instance that belongs to an object class.
The sequence obtains a message from a message queue, then
updates the object state and a history trace.

[forget(queue(message(_Instance, _Msg, _Msg_Data ..))),
[once(recall(map_object(_Instance, _Class))),
once(recall(_Class(_Instance, _Old_Obj_state))),
_Class(_Msg, _Old_Obj_state, _New_Obj_state,

_Msg_Data ..),

l
l

update(_Class(_Instance, _Old_obj_state),
_Class(_Instance, _New_obj_state)),

remember(history(_Instance, _Msg, _Msg_Data)),
cut % commit update

The symbol represented by _Class is used both to group the states
of object instances in the state space, and as the name of the
predicate which specifies the state changes for objects of that
class.

BNR Prolog User Guide

206 Part IV: Programming with Side Effects

Operations that remove data from the state space, such as
forget and update, reclaim the storage immediately.
Therefore, data which is subject to frequent change is best kept in
a state space if storage reclamation is an issue. However,
because data is copied to the global stack with each recall,
access to state space is slower than in the clause space and the
need for speed must be balanced against the need for storage
management.

inventory

The call inventory (Name}, where _Name is a variable,
generates all the symbols that have entries in the state space.
The following goal writes the contents of the state space to a
stream:

foreach([inventory(_Name), recall(_Name(_A ..))] do
[nl(Stream), put_term(_Stream, _Name(_A ..)])

save_state, load state

The global state space is independent of the context stack. It can
be saved to an external file using save state (File name} and
loaded into memory from a file using load state (File name}.
Loading a new global state space deletes any existing global state
space. The binary state space files are a convenient medium for
long term storage of Prolog data structures, as well as a
communication medium between Prolog applications.

When local names that are stored in a global state space are later
recalled, they become local to the topmost context at the time of
recall. The effect is the same as writing the structures to a file
and then reading them in later. This allows local names to be
transferred from an old context to a new context "by name",
simply by moving them in and out of the global state space. For
example, in a Prolog source to source compiler or program
transformer, if the original source contains local names, it can
be loaded as a con text. The clauses can then be extracted,
transformed, and remembered into the global state space. The
original source context can then be popped, and the transformed
source moved from the state space into a new context. Any local

BNR Prolog User Guide

Chapter 15 State Spaces 207

names in the original source, as well as any introduced during
the program transformation, become local names in the newly
created context.

Local State Spaces

Each context has a single local state space referred to as $ local.
Like the global state space, local state spaces can be created
explicitly by new state (Size, $local), or implicitly by the first
remember. Notethat since $local is a local name, it represents
a different abstract symbol in each context.

The interface to the local state is the same as for the global state
space, except that the identifying $local symbol is added to the
end of each call as in

remember(box(l0, 10, 20, 20, green), $local)
rememberz(box(l0, 10, 20, 20, green), $local)
recall(box(_, _, _, _, green), $local)
recallz(box(_, _, _, _, green), $local)
forget(box(_, _, _, _, green), $local)
forgetz(box(_, _, _, _, green), $local)

Normally, only the code in a context has direct access to the
associated local state space of that context. From the console,
only the local state space of the current context is directly
accessible. However, each $local symbol acts as a capability to
access the corresponding local state space; if a context C
dynamically exports its $local symbol, it can be used by code in
other contexts to access C's local state space. For example, it is
possible to write a context that provides state space utilities (such
as the queue utilities above), and make the local state space an
explicit parameter.

enqueue(_Queue, _Item, _Space) :
rememberz(_Queue(_Item), _Space).

first(_Queue, _Item, _Space)
recall(_Queue(_V),_Space),
I . ,
V Item. % may fail if Item does not unify

BNR Prolog User Guide

208 Part IV: Programming with Side Effects

dequeue(_Queue, _Item, _Space) .
forget(_Queue(_V), _Space),
I . ,
V = Item. % may fail if Item does not unify

The call

:- enqueue(msg_queue, msgl(..), $local).

enqueues msgl to whichever state space is referenced by $local.

It is also possible to generalize this to include the global state
space (only the enqueue predicate is shown, but the same method
applies to first and dequeue as well):

enqueue(_Queue, Item, _Space ..) :
rememberz(_Queue(_Item), _Space ..).

·- enqueue(msg_queue, msgl(..)). % global

enqueue(msg_queue, msgl(..), $local). % $local

Local states spaces differ from the global state space in that if
local names from the same context, or from an older context
(deeper in the stack), are saved in a local state space, they still
refer to the same object when recalled later. This is necessary in
applications such as building object oriented systems, where
method names need to be "localized" to enforce uniqueness. On
retrieval they should be the same object. If a program makes use
of this behavior, it may restrict the order in which contexts are
loaded.

Unlike global state spaces, local state spaces cannot be saved as
files. The local state space is automatically discarded when the
context is exited. This eliminates problems caused by leaving
unwanted items in the state space to affect future executions.
The global state space requires that the application explicitly
perform this housekeeping function.

The characteristics of state spaces are incremental storage
reclamation, unification based access, and independence from
context structure. These make state spaces ideal for retaining

BNR Prolog User Guide

Chapter 15 State Spaces 209

the changing information associated with graphics oriented
interfaces, which is the subject of the next chapter.

BNR Prolog User Guide

Chapter 16 User Interfaces 211

Chapter 16
User Interfaces

File
(················ .. ····.......................... System

1111111111i111111111111111111111111111111111 11111111
111111111111111 1111111111111111 .

11111111111111 11111111111111 :
111111,.--,-,....,......,.....,.,..,.= 11111

11111 '- '- '- '- ,,,,,
1111 ,.-, Global,,,_.,,.- 1111

11111 <, Stack:<< 1111
II BNR p I ' ' ' ' ' ' ' ' 111 II ro og ,: Program < I

II Program ~- Variables> I
1111,------. ,,,,,

111 State 1111

11111111,. Space 111111111

do raf, dotext, 11111111 11
., 11 iUIIIII

userevent, ... 11111 111111
t----"""~mm:1;;;;-!111"

•- - Man/Machine
Interface

This chapter describes both the philosophical approach to the
design of user interfaces for Prolog programs on the Macintosh,
and the tools provided for their implementation. In general,
user interfaces tend to be highly state dependent, and hence side
effects play an important role in their construction.

Virtually every user interface can be modeled as a loop such as
the following:

- display information to the user

- wait for user input

BNR Prolog User Guide

212 Part IV Programming with Side Effects

- process the user request

- return to the beginning of the loop.

The Macintosh provides two physical input devices, the keyboard
and the mouse. These two devices are used in combination with
output facilities to generate a range of input techniques, such as
the mouse pointer, menus, windows and dialogs.

User input can be acquired in two ways, either synchronously
using dialogs, or asynchronously by polling for events. Dialogs
are predetermined mini-interfaces presented in pop-up windows
that require a response from the user. While they provide a
convenient input mechanism for some purposes, such as
choosing a file or displaying a warning message, they restrict
the user to operating in a specific mode.

Modal interfaces should be avoided whenever possible. It is
preferable to give the user the freedom to perform any action
allowed by the Macintosh, and then respond to it appropriately.
All such actions (for example, clicking the mouse button or
selecting a menu item) constitute events. The ability to detect and
respond to asynchronous events makes it possible to build user
interfaces that feel responsive and free form.

The basic context for input and output in a Macintosh user
interface is the window. When a user event occurs, the active
window provides a context for the interpretation of that event (for
example, selecting Close from the File menu usually means
close the active window). Every user event includes window
information which can be used as a filter for routing the event to
the appropriate program code.

The text facilities provide for the manipulation of text windows at
the level of characters or lines, as well as pattern matching, text
selection, replacement, insertion, and deletion. In addition, the
relationship between a text window and its associated disk file
may be manipulated by loading, saving, redirecting, and
determining whether the disk and window versions of the text
match.

BNR Prolog User Guide

Events

Chapter 16 User Interfaces 213

The graphics facilities allow access to most of the Macintosh
Quickdraw toolbox routines. These include the drawing of lines,
rectangles, ovals, text, icons and composite picture structures
using integer, real, and interval coordinate specifications. A
host of drawing attributes may also be set or queried.

The focal point of an application is an event polling loop in which
events are detected and dispatched as messages to event
handlers. The event detector and dispatcher is called an event
listener. Event handlers are Prolog rules which execute when
an appropriate event message is dispatched. These rules
represent the primary mechanism by which one communicates
with user interface objects.

user action

event data

event listener

event message

user interface object
event handler

~~
compute state hange out ut

fail and backtrack succeed or terminate

Event Polling Loop

Although user interface objects can be any type of program
construct, the fundamental user interface object in most

BNR Prolog User Guide

214 Part IV Programming with Side Effects

programs is the window. Once an event is detected, for example
when the user has clicked on a menu item, the event type and
the associated window can be used to trigger an action. This is
analogous to sending a message (the event) to an object (the
window). All events are associated with the name of a window
(usually the active window) which is, by default, the intended
receiver of the event message.

The actions triggered by any event message are determined by
the event handlers. By succeeding they terminate the processing
of the event. By deliberately failing after accomplishing some
side effect, event handlers effectively resend event messages to
other interested event handlers by means of normal Prolog
backtracking.

The development environment is basically like any other Prolog
application, in that its user interface is driven by an event polling
loop written in Prolog. In the absence of user defined event
handlers, a set of predefined handlers perform sensible default
actions. Collectively, they implement the development
environment. (Some of these handlers simply succeed without
doing anything.) Because of this implementation, a considerable
amount of functionality exists over and above that provided by the
documented interface predicates.

BNR Prolog User Guide

Chapter 16 User Interfaces 215

Application Computational Code

Application Interface Objects

Application Event Handlers

System Listener

Listener's Event Handlers

Default Event Handlers

Interactive Interface
Utilities

User Interface Architecture

Since an application can be written purely as a set of event
handlers, multiple applications may be active at the same time.
The event handlers in each application receive only those event
messages pertaining to its own user interface objects, preventing
interference between applications. When no events are
occurring, the system idles in the listener. As events occur, the
listener sends messages to the appropriate handlers regardless
of which applications are present. In this manner, all
applications concurrently receive any and all event messages
pertaining only to themselves.

Not every application can be coded as a set of event handlers.
However, if an application periodically solicits user input, it can
take on the role of the listener and distribute events fairly to all
loaded handlers. In a standalone application this may not be a
consideration, although even such an application may be coded
as a set of independent processes running (apparently)
concurrently.

BNR Prolog User Guide

216 Part IV Programming with Side Effects

Event Listeners and Handlers

The Prolog system generates more than a dozen distinct user
events based on its contextual interpretation of keyboard and
mouse input. The basic event polling loop for any listener is
driven by the userevent predicate which detects these events.
Subsequent to the call to userevent, the appropriate event
handler clause is invoked.

A skeletal listener might read

samplelistener :-
repeat,

userevent(_event, _window, _dl, _d2, noblock),
once(_event(_window, _dl, _d2)),

fail.

Note that since the listener loop is a failure driven backtracking
loop, the handling of events must involve side effects to keep state
information. For the same reason, there is no cumulative
storage requirement on the global stack; only enough stack space
to handle the single most complex event is required.

An application can combine system events with further context
information to generate higher level events.

userevent

The userevent predicate returns user events when they occur.
Its calling format is defined as

userevent(_Event, _Window, _Datal, _Data2)

where the parameters contain the event that occurred, the
window in which it occurred or the active window at the time it
occurred, and two data fields whose contents depend on the
event. userevent can also be called with a fifth argument, the
symbol noblock, as in

userevent(_Event, _Window, _Datal, _Data2, noblock)

BNR Prolog User Guide

Chapter 16 User Interfaces 217

which forces immediate success, whether or not an event has
occurred. Nonblocking calls return an idle event if no other
event is pending.

The events generated by the system are, in order of report
priority

userdeactivate, useractivate

menuselect, usermousedown, usermouseup, userclose,
userdrag, usergrow, userzoom, userkey

userupdate

userupidle, userdownidle

userdeactivate and useractivate events have the highest
priority, and are generated when the active window is changed.
First the window order is changed, then a userdeactivate is
reported followed by a useractivate. These events are
invaluable for tracking and responding to changes of the active
window.

usermousedown,usermouseup,menuselect,userclose,
userdrag, usergrow, user zoom and user key are all of equal
priority and are reported on a time ordered basis. If the mouse
button is pressed inside an active graphics window a
usermousedown event is generated. This, in time, is followed by a
usermouseup. If a menu item is selected by means of the mouse
or a command key equivalent, a menuselect event is generated.
Windows have certain optional control regions in which a mouse
click generates one of the userclose, userdrag, usergrow or
user zoom events. If a key (other than a valid menu command
key) is pressed, a user key event is generated.

A userupdate event is generated when a portion of a graphics
window requires redrawing by the application. This usually
occurs when a hitherto covered portion of a graphics window is
uncovered as the result of moving or reordering the windows.

The two idle events, userupidle and userdownidle are only
generated when the nonblocking variant of userevent is invoked

BNR Prolog User Guide

218 Part IV Programming with Side Effects

and there are no other events available. These events are useful
for tracking mouse movement (for example, dragging objects)
and for enabling application background processing when no
real user events are occurring.

It is important to note that if the userevent predicate is called
with instantiated arguments and the next event does not make
the call succeed, that event is discarded and lost. Thus, the
query

?- repeat, userevent(userkey, _, _, _, noblock).

completely locks up the development environment until a key is
pressed.

Events are handled by calling the goal

_Event(_Window, _Datal, _Data2)

where Event is one of the event types generated by userevent.
Therefore, event handlers are clauses of the form

_Event(_Window, _Datal, _Data2) :-
[< event handler body>].

where unification with the clause head provides the appropriate
filtering of messages.

A typical example of a simple handler is the default userkey
event handler supplied with the system. It simply echoes every
key typed by the user back to the text window in which it was
typed, filtering out command keys. This handler is normally
executed for every key stroke typed in the development
environment.

userkey(_Window, _Key,
[_control, _option, _capslock, _shift, 0, _rrouseup])

dotext(_Window, replace(_Key)).

BNR Prolog User Guide

Chapter 16 User Interfaces 219

Windows

Windows are rectangular regions on the screen enclosed by
frames. Every window has a unique name which identifie~it,
and its own relative coordinate system. Windows can be of any
size and located at any position on the screen plane (with the
coordinates between -32768 to 32767 along each axis). Multiple
windows may be open at the same time, and may overlap each
other on the screen. The window on the top of the stack is the
active window. All other windows are ordered front to back, with
the most recently used windows closest to the top of the stack.

Once created, windows may be moved, resized, brought to the
front of the stack (that is, made active) or closed, by using generic
window predicates. Windows may also be hidden, or made
invisible. Such windows maintain all their behavioral
characteristics, but they cannot be seen and are placed at the
bottom of the window stack.

openwindow

Windows are opened by a call to

openwindow(_type, name, pos(_left, _top),
size(_width, _height),
options(_options ..))

Frames can provide various window manipulation controls in
addition to visually displaying window boundaries. The type of a
window frame is specified within the options argument of the
open window predicate when the window is created. There are
eight different window frames available. dboxproc,
altdboxproc and plaindbox simply provide a visual window
boundary.

dboxoroc

D (tdboxproc I 0
BNR Prolog User Guide

220 Part IV Programming with Side Effects

rdocproc is a round cornered frame with a title bar at the top
containing the window name and optionally a close box. The title
bar provides a convenient handle by which users can drag the
window about, generating a userdrag event when the mouse
button is pressed in it.

rdocproc

The four remaining types of frames are usually used for
documents. In addition to the title bar and close box,
documentproc and zoomdocproc provide a grow box in the
bottom right corner of the window. A mouse click on the grow
box returns a usergrow event. Growing a window means
increasing or decreasing the size of the window by dragging its
bottom right corner.

nogrowdocproc

name

zoomdocproc and zoomnogrow provide a zoom box at the right
end of the title bar. A mouse click on the zoom box returns a
user zoom event. Zooming means toggling the window position

BNR Prolog User Guide

Chapter 16 User Interfaces 221

and size between those values set by the application or user and
and that of a full size window.

The events userdrag, usergrow and user zoom all have
corresponding window predicates (dragwindow, growwindow,
and zoomwindow) which are responsible for the dragging,
growing and zooming of windows.

Two classes of windows are provided which differ in their uses
and capabilities: graphics windows for graphics I/O and text
windows for text I/O. Graphics windows can be used for any
type of graphic I/O and provide limited higher level support.
Text windows, on the other hand, may only be used for text I/O.
They are explicitly connected to a text disk file, and actually
represent a miniature text editing environment for that disk file.
For example, the call

openwindow (text, 'Sanple text', pos (0, _ty), size (_sw, _th),
options(rdocproc, nomsgbutton))

creates a text window of the form

0
¢ 0

where the 11
• :

11 represents the path to the disk file.

The predicate closewindow is used to close an open window; its
single argument is the window name, as in

closewindow('Sample text')

BNR Prolog User Guide

222 Part IV Programming with Side Effects

Text Windows

Text windows are structured entities associated with text files,
providing self contained text editing environments with high
level routines to alter their structure and content. A text window
is created by specifying the type text as an argument to the
openwindow predicate. The window's name is the complete
name of the associated disk file.

The content of a text window is organized both in terms of lines,
and in terms of characters and the data is addressable in either
format for the purposes of querying or altering it. The system
maintains the window's contents and internally handles any
mouse and update events for text windows.

In addition to the frame types discussed in the previous section,
there are three other options that can be specified. These
determine the presence or absence of vertical and horizontal
scroll bars and the message button. The scroll bars allow users
to quickly scroll through text vertically or horizontally when it
does not all fit in the window. The message button displays a
message and returns a userkey event when selected with the
mouse. The message and the actual key returned in the user
event can be both set and queried by using the messagebutton
predicate.

dotext,inqtext

The dotext predicate can provide text output, or set the attributes
of the text window environment. Output descriptors are used to
specify what to write, and the environment is set or queried
through attribute descriptors. Multiple descriptor predicates
may be included in a call to dot ext by assembling them in a list
of descriptors. (See the BNR Prolog Reference Manual for a
complete description of available text output and attribute
descriptors.)

Almost all text descriptors rely on the current text selection. The
attribute descriptors set or query the text currently selected, and

BNR Prolog User Guide

Chapter 16 User Interfaces 223

the text output descriptors alter either the text actually selected,
or the text at the position of the cursor. Relative text attribute
descriptors operate with respect to the current character or line,
and absolute text attribute descriptors selection operate with
respect to the start of the text as a whole. Text descriptors that
take or return text use either symbols or streams as the text
source/target.

Text window attributes can be queried by a call to the inqtext
predicate.

The following example uses dotext and inqtext to find and
select the nearest query to the left of the current selection
position. A query is assumed to be a sequence of characters
beginning with tl?-tl. The select query predicate first
searches for the prefix ti? - ti to the left of the current selection
position in Window and then sets the direction of search forward
again. The-inqtext goal determines the absolute character
position of the prefix so that, once the end of the query is found
with find, the entire query can be selected with dotext.

select_query(_Window) :-
dotext(_Window, [scandirection(backward),

selection('?-'),
scandirection(forward)J),

inqtext(_Window,selectcabs(_Bq,_)),
once(find(_Window, '.', [' ', '\n', ''], _Eq)),
dotext(_Window, selectcabs(_Bq, _Eq)).

A valid query must end with a period and be followed by either a
space, a new line, or the end of the file. The main predicate,
find, can be written as a general routine to search for instances
of the character Char that are followed by one of the characters
in List, and return the character's window position in

EndPos. If_ Char is not found, find fails.

BNR Prolog User Guide

224 Part IV Programming with Side Effects

find(_Window, _Terminal, _List, _Next) :
repeat,

(dotext(_Window, selection(_Terminal)) ->
[inqtext(_Window, selectcabs(_, _EndPos)),

_Next is _EndPos + 1,
dotext(_Window, selectcabs(_EndPos, _Next)),
inqtext(_Window, selection(_Char)),
once(member(_Char, _List))

failexit(find)).

Handling Keyboard Events

One of the principal event handlers for text windows is userkey.
For example, select query could be made a menu selection or a
control key sequence by adding the following clause to user key:

userkey (_Window, '/', [1, 0, 0, 0, 0, 1]) : -
once(select_query(_Window)).

This clause makes control-/ the hot key for this new user
interface feature. If control-/ is to both select a query and enter
it into the default input stream, the clause is

userkey (_Window, '/', [1, 0, 0, O, 0, 1]) :
once (select_query (_Window)),
inqtext(_Window, selection(O)).

The user key event handler can also be used for other purposes.
For example, to prevent the corruption of data in a specific text
window, typing in that window can be disabled the presence of a
clause for userkey that does nothing. To restrict the action of
this handler to a particular text window it may be necessary to
use fullfilename to match the file name obtained by the call to
userevent. This technique may be used wherever there is a
need to trigger on a text window name.

/* event handler to disable typing only in the text
window 'Sample text'*/

userkey(_window, _, _) :-
fullfilename('Sample text', _window).

BNR Prolog User Guide

Chapter 16 User Interfaces 225

The next example uses a variation of this technique in
combination with the select query predicate defined above to
change the the development environment so that queries can be
entered with the return key. The user key event handler checks
that the return key was pressed in the Console (stream 1) and
preceded by a period. Then it selects the query with
select_query and submits it to the default output stream
(stream 0). Otherwise the cursor is returned to its original
position Pos and this clause for userkey is failed thus
backtracking to the default user key handler.

userkey(Console, '\n',) :-
stream(l, Console,_),
inqtext(Console, selectcabs(, Pos)),
Prev is Pos - 1,
cr_aux(Console, Prev, Pos).

cr_aux (Console, Prev, Pos) : -
dotext(Console, selectcabs(Prev, Pos)),
inqtext(Console, selection('.')),
select_query(Console),
inqtext (Console, select ion (0)) .

cr_aux(Console, Prev, Pos) :
dotext(Console, selectcabs(Pos, Pos)),
fail.

Graphics Windows

A graphics window is created by specifying the type graf as an
argument to the open window predicate. The inside of a graphics
window is a cartesian plane with addressable points ranging
from -32768 to 32767 along each coordinate axis. The window
actually only displays the (+x, +y) quadrant with the origin at
the top left corner of the window and coordinates increasing
positively to the right and down.

Graphics windows provide basic self contained drawing
environments, with low level routines for the manipulation of
their contents, but little high level support. Applications are
responsible for remembering the contents of these windows since
no internal record is kept. This includes mouse movement as

BNR Prolog User Guide

226 Part IV Programming with Side Effects

well as content changes. Mouse activity is reported by means of
usermousedown and usermouseup events from the active
window.

When a portion of a window is freshly exposed (either when the
window is first opened or when the windows on the screen are
rearranged) the system reports a userupdate event indicating
that a portion of the window is now blank and needs to be
redrawn. The creator of the window must provide a userupdate
handler to redraw the window as required. While this event is
being processed, the system restricts any drawing to the affected
area (the clipping region) to enhance update performance.

The dograf predicate can set the attributes of the graphics
environment, or provide graphic output. Output descriptors are
used to specify what to draw, and the attributes of the graphics
environment are specified with attribute descriptors. Multiple
descriptor predicates may be included in a call to dograf by
assembling them into a list. These lists may also be nested,
which essentially restricts the scope of any attribute alterations
to the nesting level at which they occur. This makes it possible to
localize the changes in the attributes of a graphics window
without querying, remembering and then resetting the current
attributes.

Coordinate specifications to output descriptors may be either
relative to the current drawing position, or absolute with respect
to the window origin. Coordinates values can be specified either
as x, y pairs of integers or floats, or as intervals specifying x and
y ranges. With intervals, if coordinate points are required the
interval midpoints are used, and if rectangle edges are required
the interval limits are used.

Querying of environment attributes is done by means of the
inqgraf predicate.

The following demonstrates the use of some graphics predicates
to clear, redraw and add to a drawing. These predicates are
used for rubber lines in the next section.

BNR Prolog User Guide

Chapter 16 User Interfaces 227

cleardrawing deletes the state space records into which
drawing data is remembered and then clears the window by
drawing a rectangle the size of the window and filling it with the
background pattern. Note that it uses double nested brackets for
the graphics structure so as to make the fill pattern change only
temporary.

/* implement basic drawing functions*/
cleardrawing(_Window) :

forget_all(_Window(..), $local),
sizewindow(_Window, _w, _h),
dograf(_Window, [[fillpat(clear), rectabs(O, 0, _w, _h)]]).

redraw backtracks through each item of data in the local state
space and draws it in the graphics window.

redraw(_Window) :-
foreach(recall(_Window(_data ..), $local) do

dograf(_Window, _data)).

inrectangle is a simple utility which succeeds if the specified
point is within the specified rectangle.

inrectangle(_x, _y, [_xl, _yt, _xr, _yb]) :-
xl =< _x, x =< _xr,

_yt =< _y, _y =< _yb.

addtodrawing performs a verification and storage function.
After verifying that the end point of the line is within the current
window border, it draws the line and stores it in the state space.
If the end point of the line is outside the window borders,
addtodrawing beeps at the user.

BNR Prolog User Guide

228 Part IV Programming with Side Effects

addtodrawing(_Window, _xl, __yl, _x2, __y2)
sizewindow(_Window, _w, _h),
(inrectangle (_x2, __y2, [O, 0, _w, _h]) ->

[_data [moveabs(_xl, __yl),
lineabs(_x2, __y2),
circleabs(_xl, __yl, 1.5),
circleabs(_x2, __y2, 1.5)],

dograf(_Window, _data),
remember(_Window(_data ..),$local)

l ;
beep).

Rubber Lines

The interactive trick of connecting the end of the mouse cursor to
a fixed point on the screen with a line that grows, shrinks and
moves about with the mouse is called rubber lining. This
technique can be used to provide feedback for the user when
drawing lines on the screen. The mechanics of rubber lining are
demonstrated in the following program.

startrubberlining stores the initial coordinates of the line and
draws the first line simply as a point.

startrubberlining(_Window,_xl, __yl) :
rarerrber(_Wind.cM(rubber, _xl, __yl, _xl, __yl), $local),
dograf(_Window, [penpat(gray), penmode(xor),

rroveabs (_ xl, __yl) , lineabs (_ xl, __yl)]) .

continuerubberlining takes a new coordinate position and
moves the rubber line from its previous location to the new
location. If the new location is the same as the old location the
drawing code is not executed. Omission of this causes a line
which constantly flickers when the mouse isn't moving.

BNR Prolog User Guide

Chapter 16 User Interfaces 229

continuerubberlining(_Window, _xnew, _ynew) :
update(_Window(rubber, _xl, _yl, _xold, _yold),

_Window(rubber, _xl, _yl, _xnew, _ynew),
$local),

not([_xold = _xnew, _yold = _ynew]),
dograf (_Window, [rroveabs (_ x1, _yl) , lineabs (_ xold, _yold)]) ,
dograf (_Window, [rroveabs (_ x1, _yl) , lineabs (_ xnew, _ynew)]) .

stoprubberlining cleans up the state space and erases the last
rubber line.

stoprubberlining(_Window, _xl, _yl)
forget (_Window (rubber, _xl, _yl, _xold, _yold), $local),
I . ,

dograf (_Window, [rroveabs (_ x1, _yl) , lineabs (_ xold, _yold) ,
penmode(or), penpat(black)]).

D Sample g raf

Graphics Window with Rubber Lines

The basic idea of rubber lines is to draw and undraw lines
rapidly between a fixed point and the position of the mouse
cursor. In this example, the drawing and undrawing of the line
are implemented by using the xor drawing mode, which inverts
all screen pixels in the drawing path. The first time a line is
drawn it is visible. If another line is drawn in exactly the same
place, the first one disappears.

Handling Mouse Events

In the following example, event handlers for the mouse are used
to drive the rubber line program.

BNR Prolog User Guide

230 Part IV Programming with Side Effects

Pressing the mouse in the graphics window starts a new line
segment and in response to a usermousedown, rubber lining
begins. When the user releases the mouse button, a
usermouseup event signals to stop rubber lining. If the user has
defined a valid line segment then it is added to the drawing.

/* event handlers for mouse clicking in the graphics
window 'Sample graf'*/

usermousedown('Sample graf', _xl, _yl) :-
startrubberlining('Sample graf', _xl, _yl).

usermouseup('Sample graf', _x2, _y2) :
stoprubberlining('Sample graf', _xl, _yl),
addtodrawing('Sample graf', _xl, _yl, _x2, _y2).

userdownidle('Sample graf', _xnew, _ynew) :
continuerubberlining('Sample graf', _xnew, _ynew).

userupidle('Sample graf', _x2, _y2) :
stoprubberlining('Sample graf', _xl, _yl),
addtodrawing('Sample graf', _xl, _yl, _x2, _y2).

While the user is holding the mouse button down userdownidle
events are received. Therefore, rubber lining is continued. Very
occasionally, the system seems to lose a mouse up event. Just in
case this happens, the mouse up idler tries to stop rubber lining.
If a mouse up event is missed and rubber lining continues, the
predicate userupidle stops it and saves the resultant line
segment in the drawing.

The following handler is invoked when the sample listener
detects that the mouse has been clicked on the close box of the
'Sample graf' window. This closes the window, deletes the
menus (discussed in the section on Menus below) and exits from
samplelistener.

userclose('Sample graf',
cleanup,
failexit(samplelistener).

cleanup:
closewindow('Sample graf'),
stoppedmenus.

BNR Prolog User Guide

Pictures

Chapter 16 User Interfaces 231

The response to a userupdate event is to redraw the window
contents.

/* event handler for the graf update event*/

userupdate(_Window, _, - redraw (_Window).

Pictures are the mechanism by which graphic information is
transferred between BNR Prolog and other Macintosh
applications (for example, MacDraw, MacWrite). Pictures may
be stored in files, in which case they are saved as Macintosh
resources of type PI CT in the resource fork of the specified file.
Pictures may also be stored in the clipboard scrap. Any picture
may copied to the scrap and any data in the scrap may be loaded
in the form of a picture. If the scrap currently contains text, the
text is transformed into a picture before it is loaded.

In this discussion, the term picture refers to a special data
structure consisting of a sequence of low level graphic drawing
and attribute commands. Once created, a picture cannot be
disassembled into individual graphics descriptors again. Any
drawing created using the dograf predicate may be transformed
into a picture. Once created, this structure may be saved to and
loaded from a file, displayed in a graphics window, copied to and
from the clipboard, and of course deleted.

A picture is created by calling beginpicture, performing one or
more dograf calls and then calling endpicture. beginpicture
expects the specification of a picture frame as an input
argument. A picture frame is a logical boundary which, ideally,
should surround the picture's contents. The frame specification
is used later when displaying the picture to control the position
and scale at which the picture is drawn.

dograf supports a picture graphics descriptor which also
requires a frame specification. The originally specified frame
and all of the picture's contents are mapped to this second frame
when the picture is drawn. When a picture is created it is given

BNR Prolog User Guide

232 Part IV Programming with Side Effects

Menus

an identification number by the system which is returned as an
output argument from beginpicture.

If a picture is to be stored in a file, the resource number and
optionally a resource name may be specified in the savepicture
predicate. Pictures that are stored in the Clipboard scrap can be
distinguished from text by using the scrapcontents predicate.

The following code saves a drawing in a graphics window on the
Clipboard for import to other applications. First the drawing is
converted into a picture by calling beginpicture, telling it which
window to monitor, drawing the picture and then calling
endpicture. Then a call to picttoscrap transfers a copy of the
picture, and the original can be deleted since it is not needed any
more.

clip(_Window) :
sizewindow(_Window, _w, _h),
beginpicture(_Window, frame(O, 0, _w, _h), _pictid),
redrawdrawing,
endpicture(_pictid),
picttoscrap(_pictid),
deletepicture(_pictid).

Pictures can be attached to windows (1 picture per window)
using attachpicture. Once a window has a picture attached to
it, the Macintosh operating system assumes responsibility for
updating the window: no userupdate events are by the Prolog
system. Pictures can be detached from windows using
detachpict ure.

Second only to windows, menus are a fundamental user
interface mechanism on the Macintosh. They provide a simple
command interface, which, with the appropriate addition of
command key equivalents appeal to users of both the mouse and
the keyboard. In addition, they enforce a logical grouping of
items and supply an online guide to the available and active
application capabilities.

BNR Prolog User Guide

Chapter 16 User Interfaces 233

The menu bar at the top of the screen is the standard place for
menus. Special menu variations called hierarchical and pop-up
menus can appear elsewhere. (See the BNR Prolog Reference
Manual for more information.)

Each installed menu must have a unique integer identification
number. In addition, each item in a menu is individually
numbered from the top down, starting from 1. Menu selection
information is available either in the form of names or
identification numbers. Although the menuselect event returns
names, all menu predicates expect numbers.

The creation, deletion, item content and attributes of menus are
all under the application's control. The system handles the
visual representation, viewing, selecting and event notification of
user menu selections.

Menus may be created as Macintosh resources and installed at
run time. It is also possible to create, install, and modify menus
dynamically. The menus presented by the development
environment are a mixture of these types. The system's File,
Edit, Find and Windows menus are all resources that are
available for use by applications. The ConteHts menu, on the
other hand, is created in Prolog.

Whenever menus or menu items are added or deleted, the item
position is specified in terms of menu and item identifiers. This
allows the placement to be fully controlled. The decoding of
menu selections is largely independent of menu and item
ordering since in general decoding is based on names rather
than identifiers.

The following example creates a single menu in the menu bar.
When the application is loaded but not running the menu
contains one item: Start. While running it contains three
items: Stop, Clear Drawing and To Clipboard. As seen in the
figure that follows, to properly indicate that certain of the
development environment's menus are not always relevant,
some are disabled and enabled according to the ownership of the
frontmost window position by monitoring activate events.

BNR Prolog User Guide

234 Part IV Programming with Side Effects

Stop
Clear Drawing
To Clipboard

:~ : :>: :.:.:.:.:.:':.:::::>:::~:.: :,:,:,:.:.:': :.<::: :.::::: ::::: : : : :.:.: : : :.:.: :.:.:.:.:>.:.:.:' .::::: ::: :.:. : :.:.: :.:.:.:.: : : .:.:':,: :.:~:.:.: : : :.: : : :.:.: ::: : :::.: : :,:.:.::::: :::::~:,: :::,:.: :.: :.:.:::<:::.:.:~,:.:.:::': :::::~: : .,: ... : :

installmenus puts up a menu Sorn pie at the right end of the list
of existing menus and gives it a menu identifier of 10 0. It then
installs the single item Stort into this menu.

installmenus :-
addmenu(l00, 'Sample', 0),
additem('Start', ') ', 100, end_of_menu, _idl).

Once Stort has been selected, the application begins to run,
changes the existing first item, Stort, to Stop, and then adds
the two new items at the end of the menu.

runningmenus :-
menuitem(l00, 1, 'Stop', ') '),
additem('Clear Drawing', ') ', 100, end_of_rrenu, _id2),
addi tern ('To Clipboard', ') ' , 100, end_of_ rrenu, _id3) .

When the program stops running, the first item is changed back
to Start and the last two items are deleted. A call to
enablemenus is included here because when the windows are
deleted at program completion, there is no final userdeacti vate
event to trigger the enabling.

BNR Prolog User Guide

Chapter 16 User Interfaces 235

stoppedmenus :-
menuitem(l00, 1, 'Start',')'),
deleteitem(l00, 3),
deleteitem(l00, 2),
enablemenus.

The menus that are enabled and disabled are the File, Edit and
Find system menus. Although their menu identifiers are
unknown, they can be referenced by predefined symbols.

enablemenus
menuitem ('File', o, , I) I) f

menuitem('Edit', o, , I) I) f

menuitem('Find', o, , I) I) •

disablemenus
menuitem ('File', 0, I (I) f

menuitem ('Edit', o, , I (I) f

menuitem('Find', 0, I (I) •

If the window 'sample graf' defined by the program is active,
the system menus should be disabled.

/* event handlers for the activation and deactivation
of our windows*/

useractivate('Sample graf', _, _) :- disablemenus.

userdeactivate('Sample graf',) :- enablemenus.

Menu Event Handlers

When the user picks the Start menu item, the application is
started by calling sample. This sets up the windows, adjusts the
menus, and enter the program's listener loop.

When Stop is picked, a call is made to cleanup which
failexits out of the listener loop, readjusts the menus, and
closes the program's windows.

The menu item Clear Drawing provides access to the
cleardrawing function.

BNR Prolog User Guide

236 Part IV Programming with Side Effects

Dialogs

The handler for To Clipboard simply calls the clip predicate
defined in the section on pictures.

/* menu handlers for Sample menu*/

menuselect(, 'Sample', 'Start')

menuselect(, 'Sample', 'Stop') :-, . ,
cleanup,
failexit(samplelistener).

sample.

menuselect(_, 'Sample', 'Clear Drawing') :
cleardrawing('Sample graf').

menuselect(_, 'Sample', 'To Clipboard') :
clip('Sample graf').

Dialogs present the user with a preconfigured interface that
solicits specific input information. A modest set of modal dialogs
are provided. These dialogs, which require a response before
activity resumes, are presented when some form of user input or
confirmation is required before a particular activity can
continue. At times the desired response may be simply to
acknowledge the dialog.

The system provides the following types of dialogs:

message

query

confirm

to notify users of important information or status

to solicit the answer to a question via a user typed
response

to obtain a user's agreement to perform a certain
action

select, selectone to acquire a user's choices from a selection of
alternative items

selectafile, nameafile to let a user specify a filename and
directory location for a filing operation

BNR Prolog User Guide

Chapter 16 User Interfaces 237

Dialogs are prepackaged pieces of code which contain all of the
software to control a particular window. To some extent many of
the capabilities of dialogs may be programmed in Prolog using
graphics windows and the dograf and inqgraf predicates.
Such typical dialog mechanisms as labeled buttons, radio
buttons, checkboxes, static text, graphics fields and the like, may
be programmed using the existing window and graphics
facilities. Text editing fields and scrolling fields, however, are
more difficult to program.

The Renome item in the File menu uses two dialogs, calling
selectafile to get the full path name of the file to be renamed,

... :pgml

and query to get the file's new name.

Rename ... :pgm3 to :

CC::J HHH

(Ejec1)

(Oriue)

(Rename)

(Cancel)

BNR Prolog User Guide

238 Part IV Programming with Side Effects

The code for the event handler for this menu selection is:

menuselect (_front window, 'File', 'Rename ... ')
I
• I

selectafile('', 'Rename', _name) ,
swrite(_prompt, 'Rename ', _name, ' to :') ,
query(_prompt, _name, _newname) ,
(renamefile(_name, _newname) ->

write ('Renarred file ', _narre, ' to ', _newnarre, '\n')
[beep,
write('Unable to rename

_ newname, '\n')
l).

_name, ' to '

Many more examples using the selection and file specification
dialogs can be viewed by listing the menuselect handlers for the
File and Contexts menus in the development environment's
base context.

Applications in need of additional dialogs can write their own
and access them by means of the external language interface.

A Complete Program

Program sample

The various pieces of the program sample that have been
developed throughout the last few sections are collected and
presented here in their entirety.

sample is a simple program that uses mouse and menu
interface techniques to enable a user to draw graphics shapes in
a window. The basics of window manipulation, graphics 1/0,
event handling (including menus), and the exporting of graphics
pictures are presented. Note the strong bias toward a procedural
interpretation of the code due to its reliance on side effects.

For demonstration purposes, sample provides its own main
listener loop, although it works equally well with the system

BNR Prolog User Guide

Chapter 16 User Interfaces 239

listener. The listener loop, like the one presented previously,
allows sample to do everything except perform the parsing of text
which is handled by the system listener. The $initialization
clause automatically sets up menus when sample is loaded. The
Sample menu then appears and the user can select the Start
item to start the program.

Some suggested user modifications for experimentation are:

1) Comment out the program's listener to observe how it
continues to run driven from the system listener. Note that the
program appears to run in parallel with the development
environment. Queries can be executed by the system listener
without affecting the sample program.

2) Add a Pick capability. This refers to the ability to point at an
existing shape in the drawing with the mouse and to locate that
shape in the database for editing purposes. This is primarily a
matter of matching the approximate coordinates of the mouse
click with the shape whose coordinates come closest to it in the
database.

3) Add the capability to draw more than just one shape. Add
shapes like circles, rectangles, and ovals. You'll also have to
modify the rubber line techniques to accommodate these shapes.

BNR Prolog User Guide

240 Part IV Programming with Side Effects

%%
%

% This sample program illustrates the
% use of event loops, event handlers, menus,
% window management, and simple graf utilities.
%

%%%

%%
% code to implement basic drawing functions
%

%%%

cleardrawing(_Window) :
forget_all(_Window(_ ..), $local),
sizewindow(_Window, _w, _h),
dograf (_Window, [[fillpat (clear), rectabs (0, O, _w, _h)]]) .

redraw(_Window) :-
foreach(recall(_Window(_data ..), $local) do

dograf(_Window, _data)).

inrectangle(_x, _y, [_xl, _yt, _xr, _yb])
xl =< _x, x =< _xr,

_yt =< _y, _y =< _yb.

addtodrawing(_Window, _xl, _yl, _x2, _y2)
sizewindow(_Window, _w, _h),
(inrectangle(_x2, _y2, [O, O, _w, _h]) ->

[_data [moveabs(_xl, _yl),
lineabs(_x2, _y2),
circleabs(_xl, _yl, 1.5),
circleabs(_x2, _y2, 1.5)],

dograf(_Window, _data),
remember(_Window(_data ..), $local)

l ;
beep).

BNR Prolog User Guide

Chapter 16 User Interfaces 241

%%
% code to implement rubber lines
%
%%%

startrubberlining(_Window, _xl, _yl) :
rarerrber(_Winda,drul::lter, _xl, __yl, _xl, __yl), $local),
dograf (_Window, [penpat (gray), penrrode (xor),

rroveabs (_ xl, __yl), lineabs Lxl, __yl)]) .

continuerubberlining(_Window, _xnew, _ynew) :
update(_Window(rubber, _xl, _yl, _xold, _yold),

_Window(rubber, _xl, _yl, _xnew, _ynew),
$local),

not([_xold = _xnew, _yold = _ynew]),
dograf (_Window, [rroveabs (_ x1, __yl) , lineabs L xold, __yold)]) ,
dograf (_Window, [rroveabs (_ xl, __yl), lineabs (_ xnew, __ynew)]) .

stoprubberlining(_Window, _xl, _yl)
forget(_Window(rubber, _xl, _yl, _xold, _yold),

$local),
I
• I

dograf (_Window, [rroveabs (_xl, __yl), lineabs (_xold, __yold),
penrrode(or), penpat(black)]).

%%
% code to export pictures to the clipboard
%
%%%

clip(_Window) :
sizewindow(_Window, _w, _h),
beginpicture(_Window, frame(O, O, _w, _h), _pictid),
redraw(_Window),
endpicture(_pictid),
picttoscrap(_pictid),
deletepicture(_pictid).

BNR Prolog User Guide

242 Part IV Programming with Side Effects

%%
%

%

event handlers (including menus)

%%%

userclose('Sample graf',
cleanup,
failexit(samplelistener).

userupdate(_Window,

useractivate('Sample graf',

userdeactivate('Sample graf',

redraw (_Window) .

) :- disablemenus.

) :- enablemenus.

usermousedown('Sample graf', _xl, _yl)
startrubberlining('Sample graf', _xl, _yl).

usermouseup('Sample graf', _x2, _y2)
stoprubberlining('Sample graf', _xl, _yl),
addtodrawing('Sample graf',_xl, _yl, _x2, _y2).

userdownidle('Sample graf', _xnew, _ynew)
continuerubberlining('Sample graf', _xnew, _ynew).

userupidle('Sample graf', _x2, _y2)
stoprubberlining('Sample graf', _xl, _yl),
addtodrawing('Sample graf', _xl, _yl, _x2, _y2).

menuselect(, 'Sample', 'Start')

menuselect(, 'Sample', 'Stop')

' . ,
cleanup,
failexit(samplelistener).

sample.

menuselect(_, 'Sample', 'Clear Drawing')
cleardrawing('Sample graf').

menuselect(_, 'Sample', 'To Clipboard')
clip('Sample graf').

BNR Prolog User Guide

Chapter 16 User Interfaces 243

%%
% setup code
%
%%%
enablemenus ·-

menuitem ('File', o, , I) I) f

menuitem ('Edit', o, , I) I) f

menui tern ('Find' , o, , I) I) •

disablemenus . -
menuitem('File', 0, , I (I) f -
menuitem('Edit', o, , I (I) f

menuitem('Find', o, , I (I) •

setupwindows :
scrndimensions(sw, sh),
_gy is 2 * _sh II 3,
_gh is (_sh - _gy),
openwindow(graf, 'Sample graf', pos(0, _gy),

size(_sw, _gh), options(rdocproc)).

runningmenus
menuitem(l00, 1, 'Stop',')'),
additem('Clear Drawing', ') ', 100, end_of_rrenu, _id2),
additem('To Clipboard', ') ', 100, end_of_rrenu, _id3) .

setuptorun :- setupwindows, runningmenus.

installmenus :-
addmenu(l00, 'Sample', 0),
additem('Start', ') ', 100, end_of_menu, _idl).

BNR Prolog User Guide

244 Part IV Programming with Side Effects

%%
%
%

cleanup code

%%%

stoppedmenus :-
menuitem(lOO, 1, 'Start', ') '),
deleteitem(lOO, 3),
deleteitem(lOO, 2),
enablemenus.

cleanup:
closewindow('Sample graf'),
stoppedmenus.

%%
% listener loop
%

%%%

samplelistener :
repeat,

userevent(_Event, _Window, _D1, _D2, noblock),
once(_Event(_Window, _D1, _D2)),

fail.

/*mainline*/
sample setuptorun, samplelistener.

sample :- [).

$initialization·- installmenus.

BNR Prolog User Guide

Part V Miscellaneous 245

~®rrU W
[i\j] □ @J©@ □ □ ® [ru@@ [ill @j

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 247

Chapter 17
Foreign Language Interface

Procedures can be written in other languages, for example,
Pascal or C, and defined as Prolog clauses. To provide the
interface between languages, procedures must be compiled as
code resources, and then linked as a resource of type PEXT
(Prolog EXTernal). Code resources are single pieces of self
contained code for which the entry point is at the beginning. The
Macintosh Programmer's WorkBench and the Lightspeed family
of languages are examples of development environments which
provide tools for creating code resources.

Defining and Calling Externals

External procedures are defined to the Prolog system by using
the defexternal predicate. This predicate causes a code
resource to be loaded into memory and asserts a Prolog clause in
the current context to call it. The code resource remains in
memory until the context, in which it is defined, is removed.

The form of def external is:

defexternal(Predicate_name(_Variables ..),
_Filename,
_Segment_name,
[<input variable names and types>],
[<output variable names and types>])

Predicate name (Variables) defines the clause head of the
external procedure. - Fi le name is the pathname of the file
containing the code resource of type PEXT named segment name,
which contains the code for the external procedure. If -
_Filename is specified as '"', then the current applications file is
searched for the specified resource. The input and output lists
are used to define which arguments are inputs, which must be

BNR Prolog User Guide

248 Part V: Miscellaneous

instantiated, and which are outputs, which must be variables, as
well as the expected type. The order in which they appear in the
lists corresponds to the the external procedure order. Allowable
types are integer, float, symbol, and bucket.

The following example loads the code resource freemem from the
current application file and creates a clause named
free memory which unifies its arguments with two integer
values, since the arguments are defined as outputs.

?- defexternal(free_memory(_Largest, _Total),

' '
'freemem',
[] ,
[_Total : integer, _Largest : integer]).

Each call to def external results in one clause for the specified
predicate. Multiple calls to def external can be made for the
same predicate name. Thus, a predicate definition may be
composed of a mixture of externally defined clauses and clauses
written in Prolog. For calling and backtracking purposes, the
clause order is defined by the assert order; externals are
asserted with assertz semantics.

The call

?- free_memory(_LargestFree, _TotalFree).
?- free_memory(l32088, 143740).

YES

unifies _LargestFree and _TotalFree to the first and second
values returned by free_memory respectively.

Writing an External Procedure

External procedures must be code resources, which are single
pieces of self contained code for which the entry point is at the
beginning. When called, each external procedure is passed a
pointer to a structure that contains the result, a user definable
handle, the input parameters, and the output parameters.

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 249

External procedures have a single parameter, the pointer to the
structure. In Pascal, the procedure header has the form:

PROCEDURE Proc(VAR P : StackFrame);

while in C it has the form:

void Proc(P)

struct StackFrame *P;

The structure passed to the procedure for free_memory described
above is as follows (Pascal interface):

StackFrame = RECORD
Result
Reserved
UserHandle
Total Free
LargestFree
END;

LONGINT;
LONGINT;
Handle;
LONGINT;
LONGINT;

The value of Result is initially 0, which indicates a failure. A
non-zero result indicates a successful call. Reserved is a field
saved for future use. The value of UserHandle, initially NIL,
may be updated by the external procedure. It is maintained by
the system between calls, and passed to the procedure with every
call. The user handle can be used by a procedure to maintain its
"global" data. When the code resource containing the procedure
is removed, the user handle is freed.

External procedures need not be concerned with popping
parameters off the stack on return.

Parameter Interface

In an external procedure called from a Prolog program, all
parameters are passed using 32-bit values. Parameters of type
integer or bucket are of type longint in Pascal, or type long
in C. However, integers must be representable in 29 bits
including the sign, which restricts values to the range -268435456
and 268435455. A float is passed as a pointer to a SANE

BNR Prolog User Guide

250 Part V: Miscellaneous

extended floating point value, represented as "extended in
Pascal, or *extended in C. Internally, floats are represented as
a 20-bit mantissa with an 8-bit exponent, which may mean a loss
of accuracy when results are passed around. A symbol is
passed as a pointer to a Pascal string represented as
"string [255], or as a pointer to an array of256 characters,
*char [256], in C.

In the case of both input and output parameters, the space for all
strings and floating point numbers is allocated before calling the
procedure.

Restrictions

External procedures cannot declare global data. Any data that is
intended as global should be defined and manipulated through
the user handle in the stack frame. The user handle must be
used as a handle. Handles may be passed between externals by
using buckets.

Care should be taken in manipulating resources which are
managed by the Prolog system, for example windows and
menus. As well, pointer parameters should not be modified.
Such action may leave unrecoverable space in memory.

Pascal Examples

QueryMem

The following is an example of a Pascal unit containing a
procedure that obtains the total free memory and the largest
block of free memory.

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 251

{$S freemem} {segment name}

UNIT QueryUnit;

INTERFACE

USES

Memtypes, Quickdraw, Osintf;

TYPE Stackframe
Result :
Reserved:

RECORD
LONGINT;
LONGINT;

if in MPW}

Userhandle
TotalFree :

Handle; { predefined MPW type }
LONGINT;

LargestFree : LONGINT;
END;

PROCEDURE QueryMem(VAR p

IMPLEMENTATION

Stackframe);

PROCEDURE QueryMem(VAR p

VAR

Stackframe);

OldZone
Grow

BEGIN

THz;
LONGINT;

{ save current zone for restore later}
OldZone := GetZone;
{ check application zone }
SetZone(ApplicZone);
{ get total and largest free memory}
p.TotalFree := FreeMem;
p.LargestFree := MaxMem(Grow);
{ return successful result and restore zone to

what it was before}
p.Result := l;
SetZone(OldZone);
END; { QueryMem}

END. QueryUnit}

BNR Prolog User Guide

252 Part V: Miscellaneous

Assuming the source is in a file called FreeMem. p, the following
commands should be executed to create a code resource using
Macintosh Programmer's WorkBench.

Pascal FreeMem.p

to compile the unit, and

Link -o MemOut -rt PEXT=234 -sg freemem -m QUERYMEM
FreeMem.p.o "{Libraries}"Interface.o

to link the unit, where
-o MemOut specifies the name of linked file
-rt PEXT=234 specifies the resource type and id (id is

not used)
-sg freemem specifies the name of the segment and

resource
-m QUERYMEM specifies the module is to contain this

procedure, and any procedures it calls
FreeMem.p.o "{Libraries}"Interface.o

specifies the object files to be linked,
that is the compiled output and the
library files

To build and save the unit using Lightspeed Pascal, specify that
the file is a code resource of type PEXT, with any resource
number (code resources are located by name), and a name
freemem.

To define QueryMem as a clause specify the following

?- defexternal(queryMem(_Largest, _Total),
'MemOut', 'freemem', [],
[_Total : integer, _Largest : integer]).

An example of a query using freemem is:

?- queryMem(_L, _T).

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 253

Count

The procedure Count returns an integer indicating how many
times it has been executed, beginning at 1 and adding 1 to the
count for every call.

{$S countseg} { segment name}

{* **************** Counter.p ************** *}
UNIT CountUnit;

INTERFACE

USES { if in MPW
Memtypes, Quickdraw, Osintf;

TYPE
Space= RECORD

CurrentCount
END;

SpacePtr
SpaceHandle

LONGINT;

"Space;
"SpacePtr;

StackFrame = RECORD
Result : LONGINT;
Reserved:
UserHandle
Value
END;

LONGINT;
SpaceHandle;
LONGINT;

define external availability of procedure Count }
PROCEDURE Count(VAR SF : StackFrame);

BNR Prolog User Guide

254 Part V: Miscellaneous

IMPLEMENTATION

{ declaration of procedure Count }
PROCEDURE Count(VAR SF : StackFrame);
BEGIN

{ note use of AA,as UserHandle is ptr to ptr}
{ if the first call then allocate handle

and initialize count to 0}
IF (SF.UserHandle = NIL)
THEN BEGIN

SF.UserHandle :=
SpaceHandle(NewHandle(sizeof(Space)));

SF.UserHandleAA.CurrentCount ·= 0;
END { IF};
increment count }

SF.UserHandleAA.CurrentCount ·=
SF.UserHandleAA.CurrentCount + l;

{ return current count value}
SF.Value:= SF.UserHandleAA.CurrentCount;
{ return a successful result value}
SF.Result := l;
END { Count };

END. { CountUnit

Using the Macintosh Programmer's WorkBench to compile and
link the unit CountUnit in a file Counter .p, specify

Pascal Counter.p

to compile the unit

Link -o CountOut -rt PEXT=235 -sg countseg -m COUNT
Counter po "{Libraries}"Interface.o

to link the unit. To build and save the unit using Lightspeed
Pascal, specify that the file is a code resource of type PEXT,
with any resource number, and a name Counter.

To define counter, specify the following

?- defexternal(counter(_Count), 'CountOut', 'countseg',
[], [_Count : integer]) .

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 255

then call it as follows:

?- counter (_X) .
?- counter(l).

YES
?- counter (_X).

?- counter(2).
YES

Combine

This example shows how to manipulate strings, by taking two
strings and combining them into a third. Note that although the
input and output parameters can be in any order, the
parameters passed to the procedure are in the order specified by
the input and output parameter lists, with the inputs coming
first.

{$S segComb} { segment name}

UNIT Comb;

INTERFACE

USES { if in MPW}

Memtypes, Quickdraw, Osintf;

TYPE

StrPtr = AStr255;

Stackframe = RECORD
Result :
Reserved:

LONGINT;
LONGINT;

{Str255 STRING[255];}

Userhandle
Inl

Handle; { predefined MPW type}
StrPtr;

In2 :
Out
END;

StrPtr;
StrPtr; { combined string

define external availability of procedure
PROCEDURE Combine(VAR SF : Stackframe);

BNR Prolog User Guide

256 Part V: Miscellaneous

IMPLEMENTATION

PROCEDURE Combine(VAR SF: Stackframe);

BEGIN
{ will the result be less than 255 chars? }
IF (LENGTH(SF.InlA) + LENGTH(SF.In2A)) <= 255

THEN BEGIN
{ combine the strings, return success
SF.OutA := CONCAT(SF.InlA, SF.In2A);
SF.Result := 1;
END

ELSE { string too big, fail }
SF.Result := 0;

END; {Combine}

END. Comb}

To create the code resource if the source is in the file Combine. p,
use the following commands in Macintosh Programmer's
WorkBench.

Pascal Combine.p

Link -o OutComb -rt PEXT=236 -sg segComb -m COMBINE
Combine.p.o "{PLibraries}"PasLib.o

To build and save this unit using Lightspeed Pascal, specify that
the file is a code resource of type PEXT, with any resource
number, and a name Combine.

Once created, this file can be used by specifying the following:

?- defexternal(combine(_Out, _A, _B),
'OutComb',
'segComb',
[_A: symbol, _B: symbol],
[_Out : symbol]).

An example using the code resource is

?- combine(_X, 'The little ', 'brown fox').

BNR Prolog User Guide

Chapter 17 Foreign Language Interface 257

which returns "The little brown fox". To demonstrate that
input order is based on the parameter lists and not the order of
the clause head:

?- defexternal(combine(_Out, _A, _B),
'OutComb',
'segComb',
[_B : symbol, _A: symbol],
[_Out : symbol]).

In this case, the same query returns "brown foxThe little ".
However, if both the first and the second definition exist at the
same time, then there are two possible answers to the query, and
backtracking causes both to be displayed.

In the following definition and query, the ordering of the
external procedure's parameters has been changed. Note also
that the name of the procedure has been altered. This has no
impact on the Pascal resource, since the name is only
meaningful within the context of the Prolog program.

?- defexternal(combined(_A, _B, _Out),
'OutComb',
'segComb',
[_A: symbol, _B : symbol],
[_Out : symbol]).

?- combined('The little ', 'brown fox', _X).

C Examples

Beep is a procedure in C which beeps for the duration specified.

/* ****************

#include <types.h>
#include <memory.h>
#include <osutils.h>

#define TRUE 1
#define FALSE 0

Beeper.c *************** *I

BNR Prolog User Guide

258 Part V: Miscellaneous

/* type stackframe */
struct stackframe

long Result;
long Reserved;
long MyHandle;
long Duration;

} ;

/* procedure Beep*/
void Beep (p)
struct stackframe *p;

if (p->Duration > 0)
{

SysBeep(p->Duration);
p->Result = TRUE;

}

else
p->Result FALSE;

To build the code resource Beep, the following compile and link
commands are necessary under the Macintosh Programmer's
WorkBench

C Beeper.c

to compile the unit, and

Link -o BeepOut -rt PEXT=l00 -m Beep -sn Main=BeepSeg
Beeper.c.o

to link the unit, where

-o BeepOut
-rt PEXT=lOO

-m Beep

-sn Main=BeepSeg
Beeper.c.o

BNR Prolog User Guide

specifies the output file
specifies the resource type and id
although resource id is not used
specifies to only use function Beep
and any procedures it calls
rename segment as BeepSeg
specifies the object file name

Chapter 17 Foreign Language Interface 259

To define myBeep, specify the following

?- defexternal(myBeep(_In), 'BeepOut', 'BeepSeg',
[_In : integer], [l).

and to use it:

?- myBeep (10).

BNR Prolog User Guide

Chapter 18 System Information 261

Chapter 18
System Information

For the most part, BNR Prolog users need not be concerned with
the internal structure of the system. However, serious
developers are often concerned fine tuning applications to
minimize execution time and memory requirements, and
packaging applications for distribution. These activities require
additional insight into the internal structuring of memory and
the use of performance monitoring predicates.

Derived applications are structurally identical to the BNR Prolog
development system, with the exception of a small number of
development facilities that have been removed. These include
the ability to create the binary forms of contexts, to save work
space files, and to insert spypoints on predicate definitions. In
their place are the Prolog application code and additional
resources such as externals, menus, and icons, that implement
the particular application. Most of the discussion that follows
applies to both the development environment and derived
applications. Any differences are explicitly noted.

Application Structure

All Macintosh applications divide the available memory into an
execution stack, and a heap which contains dynamically
allocated blocks of memory. On startup, BNR Prolog
applications preallocate three chunks of memory for the world,
global and local stacks. (The use of these stacks is described
below.) The remainder of the heap holds other runtime data
structures such as control blocks associated with files and
windows, state spaces, and such resources as code, pictures,
icons, and menus. Many of the predefined predicates are written
in Prolog; these are contained in the base context of the world
stack.

BNR Prolog User Guide

262 Part V Miscellaneous

Preallocation of the three stacks permits these memory areas to
be managed in an optimal fashion according to their function, as
well as guaranteeing a minimum amount of memory for each
function. When the stacks overflow, the current goal execution
is aborted. Automatic extension of these stacks is not attempted.

The world stack holds all clause definitions and is structured as
a stack of named contexts. The lowest context is base, which
contains the system predicates written in Prolog. The first user
accessable context is userbase, followed by any other loaded and
dynamically created contexts. (The ConteHts menu provides
feedback on the current state of the context stack.) The world
stack must be preconfigured to hold the base context as well as
any user defined contexts required at any given time.

The global stack holds the state of the current computation. Call
activation records and variables are kept in the execution space.
(In many ways this is analogous to the execution stack of a
Pascal or C program.) The size of this stack is dependent on the
execution behavior of the application.

The local stack holds the list of choice points used on
backtracking, and provides temporary storage for unification,
copying, parsing, printing and miscellaneous predicates. The
size requirements are also dependent on the execution behavior
of the application, but are usually smaller than the global stack.

The default amount of memory required to run BNR Prolog
under MultiFinder is set to 1 Mbyte. (The default memory
allocation may be found using Get Info in the finder's File
menu.) BNR Prolog configures itself to run with less memory on
smaller systems.

configuration

The configuration predicate is used to set or query the initial
goal, as well as the allocation sizes of the three stacks. These
size values, specified in Kbytes, are saved in the initial
configuration information for use when an application is
launched or restarted; configuration does not change the

BNR Prolog User Guide

Chapter 18 System Information 263

current allocations. If a size value is O (specifying use of a
default value) or if a value is inappropriate (too large or too
small), space is allocated from available memory using a default
minimum size and a percentage of available memory. Failure to
allocate the stacks causes the application to abort.

The configuration predicate also specifies the initial goal to be
executed, saving the information with the initial configuration.
The initial goal argument is a symbol containing a single Prolog
term which is executed deterministically (as in : -
initial goal.). Multiple goals can be collected in a list, for

example -

' [load_context(set_up), load_context(more_definitions)]'

The following query

?- configuration(0, 0, 20, _).

results in the sizes for the world stack and the global stack being
based on the amount of memory available when the application
is launched or restarted. The local stack is specified at 2 O
Kbytes, and the initial goal remains unchanged. (In this
example, the current initial goal is unified with the anonymous
variable.)

The purpose of the initial goal in derived applications is
somewhat different from its purpose in the development
environment. In the former the initial goal is the application
goal; when the call to the goal returns, the application is
terminated. In the development system, it is primarily used to
permit the user to customize the environment by defining
additional contexts to be loaded, additional files to open, and so
on.

restart

Execution of the restart predicate returns the environment to
the state of the application immediately after launch. The three
stacks are reallocated, and the initial goal is re-executed. All
contexts are restored to their initial state and state spaces are

BNR Prolog User Guide

264 Part V Miscellaneous

deallocated. Text windows stay open over a restart, but graphics
windows are closed. restart is primarily used to put any
configuration changes into effect, but is sometimes useful to
return the development environment to a known state before
continuing.

quit, hal.t

To terminate execution of an application, the quit predicate (or
its synonym halt) is used. Text windows are closed, with
prompts to save the files whose contents differ from their
windows.

State Spaces

State spaces are allocated on the application heap by the
program. Growth by incremental amounts is automatic.
Although the memory internal to state spaces is dynamically
recovered, a state space never shrinks in size. The new_state
predicate can be used to explicitly control the allocation of
memory to a state space. If a program requires a large state
space, it is often more efficient to reserve the memory with a call
to new_state, rather than to rely on incremental growth.

See the chapter "State Spaces" for more information on the use of
state spaces.

Work Spaces

During program development, it is often desirable to save an
intermediate step in a development session, or to snap shot a
problem for subsequent investigation. The state of the
development environment is captured by using the save ws
predicate, which saves the binary format of the clause data base
and the initial configuration data in a work space file. State
spaces are not saved.

Opening a work space file in the finder launches the BNR Prolog
application and loads the specified work space in preference to
the one preserved in the application file. Only one work space

BNR Prolog User Guide

Chapter 18 System Information 265

file should be opened; if multiple work space files are selected,
the last work space in the list built by the Finder is used.

Externals

An external is a clause whose the body is a code resource,
written in an external language such as Pascal or C. To
simplify the programming model for externals, arguments are
constrained to be simple types (symbol, integer, fl.oat or bucket),
and either input or output (but not both). External code
resources, like other resources, are kept in the resource fork of
either the application file or a separate user ,managed file.

See the chapter "Foreign Language Interface" for a complete
description of externals.

Monitoring the Environment

The environment monitoring predicates have several uses.
Inspection of the amount of space used in the various stacks and
the global state space may indicate how the environment can best
be configured. A sequence of calls to the monitoring predicates
around critical portions of a program can help identify the areas
where there might be excessive consumption of time and/or
space.

memory_status

The memory status predicate returns space usage information
for the three-system stacks and the global state space. For each
of these areas, there is a list of three numbers, the size of
allocated space, the amount currently in use, and the
measurement of the largest amount used up to the current time
(a high water mark). All sizes are expressed in the number of
bytes. The predicate stats resets all high water mark values.

cputime

The predicate cputime returns the amount of time, in
milliseconds rounded to the nearest 1160th of a second, since

BNR Prolog User Guide

266 Part V Miscellaneous

powerup of the Macintosh. The predicate timer, listed below,
shows how cputime can be used in calculating the execution
time of Goal:

timer(_Goal, _Time)
_Tl is cputime,
_Goal,

Time is cputime - Tl.

stats

The stats predicate returns the number oflogical inferences,
the number of primitive calls (primitives are built-in utilities, not
clauses), the number of interval operations and narrowing
iterations, and the time (in units of 1/60 second) since all the
counters for the above values were zeroed. When stats is called
without arguments, the counters and the high water marks for
the three stacks and the global state space are zeroed (see
memory_status above).

The predicate lipsrate listed below calculates the logical
inferences and primitive calls executed per second for _Goal:

lipsrate(_Goal, _Lips):
stats,
_Goal,
stats(Inf, Prim, _Ticks),
_Lips is (_Inf+ _Prim) / (_Ticks/ 60).

The iterations and interval operations information measures the
amount of work done using interval arithmetic. The iteration
count is the number of times the interval arithmetic engine has
been invoked, while the interval operations is the number of
atomic interval operations executed, for example, addition and
multiplication. An atomic interval operation corresponds to a
few equivalent floating point operations.

Building an Application

All Macintosh files (also known as documents) have an
application signature and a file type, each specified by a

BNR Prolog User Guide

Chapter 18 System Information 267

sequence of four characters. The signature is used to associate
applications and their documents; file type is used to distinguish
between various document formats for a given application.

BNR Prolog documents have the following creator signatures
and types:

I Document I Signature 'Type
BNRProlog APRO APPL
source APRO TEXT
work space APRO APWS
state space ???? APSS

BNR Prolog may be launched through the finder by opening the
application, a source document, or saved work space document.

An application built using the development environment should
be given its own signature, so that relevant documents may be
associated with it. Document types and creator signatures are
registered with Apple to guarantee uniqueness.

An application is a single document containing the Prolog
runtime system, a base work space, binary contexts, external
code resources, other Macintosh resources and the initial
configuration information. The work space resides in the data
fork; all others reside in the resource fork of the file. An
application has a file type of APPL, and a signature that is
specified when it is built. State spaces are not part of application
files. In fact, they are not normally associated with an
application as their creator is initially specified as ? ? ? ? .

An application other than the development environment
terminates after execution of the initial goal, since that is what
drives it. Responsibility for initializing any resources that may
be required, such as windows, menus, and files, rests with the
application.

BNR Prolog User Guide

268 Part V Miscellaneous

build_application

An application is built by calling build_application, which
has the following form:

build _awlication (_filenarre, _signature, _stack_sizes,
_ initial _predicate, [<contexts>])

filename is the pathname of a file to be created. If the file
already exists, then the predicate fails.

signature is a symbol representing the creator of the
application. It must be exactly four characters in length, padded
with blanks if necessary. The application is automatically given
the file type APPL.

stack sizes is a list of three numbers specifying the size in
Kbytes of the world stack, the global stack, and the local stack
respectively. If this argument is unbound, then the current
development environment configuration is used. A size of O for a
stack causes BNR Prolog to allocate the stack based on the
amount of free memory available to the application. For
example, if you only want a 2 O Kbyte local stack and want the
others to be as large as possible, _stack_sizes is [0, 0, 20].

initial predicate is a term specifying the initial goal list.
Upon completion of this term, the application exits.

<contexts> is a list of context file names or external file names
to be included in the application file. "Current" binary images
are created if necessary. If the empty list is specified, no
contexts are added.

To create a simple application composed of nothing more than
the initial goal that simply brings up a dialog with a message
and then quits, specify:

?- build_application(silly, 'SAMP', _X,
'message(\'Hi there\')',[]).

BNR Prolog User Guide

Chapter 18 System Information 269

Launching the program silly results in a dialog with the words
Hi there. Clicking on OK causes the program to terminate. (If
running under MultiFinder, you need to exit BNR Prolog only if
it is in the same folder as the created application. This is
necessary because applications try to open and close the file
Console that is already in an open state for BNR Prolog.)

Note that an application cannot use the built-in predicates
build application, save ws or set trace, since they are
available only in the development environment.

When the initial goal is executed, no contexts other than the
default contexts included in the work space are loaded. This
means that the initial predicate must be used to load all user
defined contexts. The search algorithm for loading contexts first
looks for a file (or window) before looking for the binary context
inside the application. This allows the user to override an
embedded context by having a file with the same name as the
embedded context accessible in the current working directory.
Choosing uncommon names for your contexts helps to prevent
accidental overrides.

Certain operations, such as loading a context, result in a
message being written to the Console file. This file is initially
hidden from view. However, upon exiting Prolog, the user is
prompted to save this file and any other open windows if changes
have occurred. The application can avoid the prompt for the
Console (which the user may have never seen) by closing (and
possibly saving) the Console window immediately prior to
quitting.

Supporting the Macintosh Interface

Applications built using build_application do not contain any
icons and appear on the desktop as the default system icon for an
application. If the application requires icons for its files, they
must be created outside of BNR Prolog and added to the
application after it is built. Icons (resource type ICON or ICN#)
consist of a small bitmap representing an image, and a mask to
transform it when it is selected. Icons can be created by

BNR Prolog User Guide

270 Part V Miscellaneous

specifying the bitmap, although it is generally easier to use
specialized tools like ResEdit to create the icon. While an
application does not require icons, they may be created to
customize an application. (For example, BNR Prolog has four
associated icons.) Each file type should have a different
appearance when displayed by the finder.

In addition, applications do not initially contain a bundle
resource defining the relationship between the application and
the files associated with it. A bundle resource (resource type
'BNDL') specifies the application's signature, its version
resource identifier, and the mappings between icons and file
references that are contained in the application. The Macintosh
system uses a bundle resource to find the icons associated with
an application.

The version resource contains a string describing the
application. The resource type of the version is the same as the
application's signature. The example silly, has a resource of
type SAMP. The version resource is displayed by the 6 et I n f o
command from the finder.

A resource of type FREF is required by the Macintosh for each
different type of document created by an application (unless the
Macintosh defaults are used). A file reference contains the file
type, a local file reference that is also used by the bundle, and a
file name. BNR Prolog contains four such resources, one for
each type of file (and icon).

For new applications, the • menu contains an item displaying
Rb out BNR Prolog ... This can be changed by editing the
application's menu resource, SysApple, to contain the
appropriate string.

BNR Prolog User Guide

Chapter 18 System Information 271

Program si11y

To illustrate these concepts, assume there is an application that
only uses and creates text files. This means that two icons are
required; one for the application and one for text files as follows:

ITEl
~

This example uses the Macintosh Programmers Workshop tools,
specifically Rez. (The format of the file is applicable to version 2.0
of MPW.) The code adds the necessary resources to the
application so that the application itself, and any text files it
creates, appear as the icons above. Double-clicking such text
files launches the application. (Other tools, such as ResEdit and
RMaker can be used to accomplish the same thing.)

#include "Types.r"

type 'SAMP' as 'STR ';
resource 'SAMP' (O)

{ "BNR Prolog sarrple ar:plication" /* version data * /};

resource 'BNDL'

I SAMP I,
o,
{ I ICN# I,

} ;

{ o, 128,
1, 129,

} ,
'FREF I,

{ o, 128,
1, 129,

(128)

/* application's signature*/
/* resource id of version data*/

/* application icon is 128 */
/* text file icon is 129 */

/* application file ref is 128 */
/* text file ref is 129 */

BNR Prolog User Guide

272 Part V Miscellaneous

resource 'FREF' (128, "Sample Application")

'APPL', /* file type*/
0, /* local ref from BNDL *I
"Sample Application" /*filename */

} ;

resource 'FREF' (129, "Sample Text")

'TEXT', /* file type */
1, /* local ref from BNDL */
"Sample Text" I* file name */

} ;

resource 'ICN#' (128, "Sample Appl icon")
{

{ /* original image*/
$"0001 0000 0002 8000 0004 4000 0008 2000"
$"0010 1000 0020 0800 0040 0400 0080 0200"
$"0100 0100 0200 0080 0400 0040 0800 0020"
$"118F 7A10 2249 4A08 4249 4A04 83CF 7A02"
$"4668 4204 2428 4208 1428 43D0 0800 0020"
$"0400 0040 0200 0080 0100 0100 0080 0200"
$"0040 0400 0020 0800 0010 1000 0008 2000"
$"0004 4000 0002 8000 0001",

/* reversed image when selected */
$"0000 0000 0001 0000 0003 8000 0007 C000"
$"000F E000 00lF F000 003F F800 007F FC00"
$"00FF FE00 0lFF FF00 03FF FF80 07FF FFC0"
$"0FFF FFE0 lFFF FFF0 3FFF FFF8 7FFF FFFC"
$"3FFF FFF8 lFFF FFF0 0FFF FFE0 07FF FFC0"
$"03FF FF80 0lFF FF00 00FF FE00 007F FC00"
$"003F F800 00lF F000 000F E000 0007 C000"
$"0003 8000 0001"

}

} ;

BNR Prolog User Guide

Chapter 18 System Information 273

resource 'ICNf' (129, "Sample Text icon")
{

{ /* original image*/
$"0FFF FFF8 0800 0008 0800 0008 0800 0008"
$"0800 0008 087F 3F08 0808 2008 0808 2008"
$"0808 2008 0808 3C08 0808 2008 0808 2008"
$"0808 2008 0808 3F08 0800 0008 0800 0008"
$"0800 0008 0800 0008 0841 3F88 0822 0408"
$"0814 0408 0808 0408 0808 0408 0808 0408"
$"0814 0408 0822 0408 0841 0408 0800 0008"
$"0800 0008 0800 0008 0800 0008 0FFF FFF8",

/* reversed image when selected */
$"0000 0000 07FF FFF0 07FF FFFO 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0 07FF FFF0
$"07FF FFF0 07FF FFF0 07FF FFF0"

} ;

If the above text is placed in the file silly. r, then the MPW
commands:

rez -a -o silly silly.r
setfile -a B silly

add the resources into the file silly, and set the bundle bit for
the application since there is now a bundle. This bit causes the
finder to examine the resource fork of the application and extract
the icons for display.

BNR Prolog User Guide

274 Part V Miscellaneous

Managing Error Conditions

During the execution of a program, such things as execution of
an integer or execution stack overflow can cause system errors.
A mechanism is provided to enable recovery from both system
and program errors through the predicate capsule.

The recommended technique is to encapsulate a program
defined error handler within that portion of a program in which
there is a possibility of error. For example, if the program
portion is packaged as the goal code and the error handler is the
predicate error handler, the occurrence of code is replaced by
the encapsulation

capsule(code, error_handler)

capsule succeeds as the program portion succeeds. If the
program portion fails on a error, the interpreter recovers
(instead of aborting) and the error handler is executed. capsule
is defined as:

capsule(_Code, _Handler) :
recovery_unit(_Code)
Handler.

recovery_unit(_Code)
recovery_unit(_Code)

Code.
failexit(capsule).

Since failexit applies to the innermost goal of the named
predicate, capsules can be nested.

The error recovery mechanism is based on the special goal
recovery unit. When a system or program error is detected,
failexi t (recovery unit) is executed if recovery unit is
present on the goal stack. Otherwise, the program aborts. To
avoid confusion, the Prolog program should not use capsule or
recovery_ unit as internal predicate names.

BNR Prolog User Guide

Chapter 18 System Information 275

The general strategy for a handler is to inspect the integer error
code returned by the predicate get error code, and take
appropriate alternate or recovery action, as in

error handler :
get_error_code(_Error_code),
error_recovery(_Error_code).

error (error code) triggers the error condition specified by its
integer argument. Predefined system values of this code are
found in "Appendix B" of the BNR Prolog Reference Manual.

Consider a simple handler which outputs an error message and
aborts execution:

handler:-
get error_code(_E),
nl, write('**** ',_E,' ****),nl,
failexit(listener). % not very clever

This handler may be tested with the following queries:

?- capsule(error(22), handler).

% an attempt to execute a variable produces error 16
?- capsule(error(_X),handler).

Using Command-. is a second way of interrupting program
execution. When this occurs, a call to the predicate
attention handler is interpolated into the normal execution
stream. If the call to attention handler succeeds, normal
execution is resumed. The system provided attention handler
provides an optional traceback, aborts the current computation,
and returns to the listener. An example of an
attention handler which optionally aborts or continues
program execution follows:

attention handler :-
cut(attention_handler), % remove other choices
confirm('Abort execution?', '', 'YES', _Reply),
_Reply= 'YES' -> failexit(listener).

BNR Prolog User Guide

Chapter 19 The Debugger 277

Chapter 19
The Debugger

In procedural programming languages, once a variable is
assigned a value, it continues to have that value until either
another is assigned or scoping rules make the variable
inaccessible. By means of debugging facilities, the programmer
can always examine the value of an accessible variable, as well
as trace the path of the program as it moves forward in
execution.

Not only does a Prolog program not always move forward, but a
value that is bound to a variable through unification may be
unbound by backtracking. Monitoring backtracking requires the
ability to display the system's attempts to resatisfy a goal. Thus,
a Prolog debugger must show the unbinding of variables as well
their unification.

The Box Model

Prolog debuggers are based on the four port box model of a
predicate. (We use the term predicate here to refer not only to the
logical relationship, but also to its implementation as a set of
clauses with the same principal functor.) In this model, a
Prolog predicate is treated as a black box with four ports: call,
exit, redo and fail. The ports represent the various states in
which a predicate may be found during execution.

call !j::::•.··.--------------!'" exit

variables variables
remal·n predicate may
the same change

fail .,__...._ ________ ___,,111,........ redo

Four Port Box Model

BNR Prolog User Guide

278 Part V Miscellaneous

When a state change occurs, the debugger displays the current
goal with the variable bindings, the execution port, and the
unique invocation identifier. The identifier aids in correlation of
the various state changes of the predicate. Whenever a predicate
is called with a new set of arguments, a new invocation identifier
is generated. Calls subsequent to the initial goal are
distinguished by both a depth number and an invocation
identifier.

Only those predicates that are visible from the current context
are accessible to the debugger. This excludes local names in
other than the current context.

The call port for a predicate represents the initial invocation of a
Prolog goal. Execution of the predicate has been initiated by a
call, and the variable bindings at the time of the call are
displayed.

The exit port represents the state a predicate reaches upon the
success of a call or redo. Execution of the predicate is complete,
and the variable bindings at the time of completion are displayed.
This includes the instantiated values of those variables that were
unbound at the time of the corresponding call.

Like the call port, the redo port represents a state for which the
predicate is the current goal, but in this case alternative solution
for this goal is being attempted. Some subsequent goal has failed
and backtracking has occurred. The redo port bears the same
call number as the initial invocation. The variable bindings
displayed are those of the corresponding exit.

The fail port indicates a failure state for the predicate after either
a call or a redo. The variable bindings displayed are those of the
corresponding call.

If a call is made to a predicate that is not in the knowledge base,
the debugger signifies this by displaying a call and a fail with
"? ? 11 to the left of the invocation number.

BNR Prolog User Guide

Chapter 19 The Debugger 279

Using the following program and query :

/* program FFamily */

father(_X) parent(_X), male(_X).
mother(_X) :- parent(_X), female(_X).
parent(_X) :- has_child(_X).
has_child('Krystyna').
has_child('Jean_Jaques').
male('Jean_Jaques').
female('Krystyna').

?- father (_X) .

the succession of predicate state changes that occur in the
attempt to satisfy the goal is shown diagrammatically as follows:

father (_X)

..,_,L, ____________________ __.,,11,

call , ... ,_ .. , w.·,··•l,:-,. exit ►

fail ◄◄---- redo ·••IU

State Changes

The call port is entered only once with any given set of
arguments. A redo port is entered only as the result of a
previous failure or exit. A predicate passes through an exit or
fail port only if it has entered a corresponding call or redo port.

To enable users to see the state changes according to the
predicate box model, there are three modes of debugging
available. Creeping displays every state change for every
predicate executed. Each goal is executed by a second level

BNR Prolog User Guide

280 Part V Miscellaneous

interpreter in this mode, which makes the global stack
requirement much higher. Leaping displays every state change
for those predicates specifically marked with spypoints by the
user. Skipping displays every state change for the currently
active predicate. A group of single character commands are
available in all modes.

Debugging a Program

Debugging is enabled by the predicates debug or trace, and
disabled by nodebug or not race. Leap mode is automatically
enabled with the debug command. No break in execution of the
program occurs until a spypoint is reached. Use of the trace
command automatically causes a pause in execution at the call
port for the first goal of the program.

Once debugging is specified and execution of a program is
initiated, debug information is displayed, and the system waits
for the next single character command from the user. In
alphabetical order, a list of commonly used commands are:

a

b

- abort execution of the current program and
disable debugging

- break execution to the listener (use continue to
resume execution)

c or return - creep to the next port and display predicate
information

f

g

h or ?

1

n

- fail the current goal

- display ancestor history of current goal

- display help menu

- leap to the next port for a predicate marked with a
spypoint.

- disable debugging

BNR Prolog User Guide

r

s

+

Chapter 19 The Debugger 281

- unbind variables and retry the call to the current
predicate

- skip to the next port for the current predicate is
reached. If the exit of that predicate is reached,
revert to creep mode

- mark the current predicate with a spypoint

- remove a spypoint from the current predicate

After execution of commands that provide information rather
than continue execution of the program, the debug information
for the current predicate is repeated, and a further port
command is awaited.

During execution of a program for which debugging is enabled,
use of Command-. causes an execution interrupt. Control is
passed to the debugger, which is initially in interactive creep
mode.

Creeping

Creeping single steps the program from the current position to
the next valid port for any callable predicate and displays debug
information. For example, if tracing the program FFamily, as in

?- trace.
?- father (_X) .

the debugger interrupts the execution of father and displays the
call port

(1) 0 call: father(_X) ?

At this point the debugger will accept interactive debug
commands. Using creep to provide debug information
pertaining to the program's execution, a complete step by step
trace of all the ports is:

BNR Prolog User Guide

282 Part V Miscellaneous

?- father(_X).
(1) 0 call: father(_X) ? C

(2) 1 call: parent (_X) ? C

(3) 2 call: has child(_X) ? C -
(3) 2 exit: has_child('Krystyna') ? C

(2) 1 exit: parent('Krystyna') ? C

(4) 1 call: male ('Krystyna') ? C

(4) 1 fail: male('Krystyna') ? C

(2) 1 redo: parent('Krystyna') ? C

(3) 2 redo: has_child('Krystyna') ? C

(3) 2 exit: has_child('Jean_Jaques') ? C

(2) 1 exit: parent('Jean_Jaques') ? C

(5) 1 call: male ('Jean_Jaques') ? C

(5) 1 exit: male('Jean_Jaques') ? C

(1) 0 exit: father('Jean_Jaques') ? C

?- father('Jean_Jaques').

If the user chooses to search the knowledge base for more than
one solution to a query, the debugger attempts to redo those goals
for which there are choicepoints, as in

(1) 0 redo: father('Jean_Jaques') ? C

(5) 1 redo: male('Jean_Jaques') ? C

(5) 1 fail: male('Jean_Jaques') ? C

(2) 1 redo: parent('Jean_Jaques') ? C

(3) 2 redo: has child('Jean_Jaques') ? C -
(3) 2 fail: has _child(_X) ? C

(2) 1 fail: parent(_X) ? C

(1) 0 fail: father(_X) ? C

YES

Note the port numbering format (n) m where (n) is unique for
every predicate call and m indicates the depth of the current goal
in relation to the main goal. Port numbering aids in
distinguishing predicate calls and nesting levels within the call
hierarchy.

When in creep mode, providing input for all ports of all
predicates may be tedious. To reduce the amount of prompting
by the debugger, leash can be used to create a leash list

BNR Prolog User Guide

Chapter 19 The Debugger 283

specifying at which ports prompting is desired. For example, the
command

?- leash([call, redo]).

results in a display of all ports, but pauses for input occur only at
call and redo ports. Thus, the goal

?- mother (_X) .

produces the output

?- mother (_X) .
(1) 0 call: mother(_X) ? c
(2) 1 call: parent(_X) ? c
(3) 2 call: has_child(_X) ? c
(3) 2 exit: has_child('Krystyna')
(2) 1 exit: parent('Krystyna')
(4) 1 call: female('Krystyna') ? c
(4) 1 exit: female('Krystyna')
(1) 0 exit: mother('Krystyna')
?- mother('Krystyna').

(1) 0 redo: mother('Krystyna') ? c
(4) 1 redo: female('Krystyna') ? c
(4) 1 fail: female('Krystyna')
(2) 1 redo: parent('Krystyna') ? c
(3) 2 redo: has_child('Krystyna') ? c
(3) 2 exit: has_child('Jean_Jaques')
(2) 1 exit: parent('Jean_Jaques')
(5) 1 call: female('Jean_Jaques') ? c
(5) 1 fail: female('Jean_Jaques')
(2) 1 redo: parent('Jean_Jaques') ? c
(3) 2 redo: has_child('Jean_Jaques') ? c
(3) 2 fail: has_child(_X)
(2) 1 fail: parent(_X)
(1) 0 fail: mother(_X)

YES

BNR Prolog User Guide

284 Part V Miscellaneous

Leaping

The command

?- leash([]).

disables leashed debugger output without changing the mode of
debugging. Thus, the debugger only pauses for spypoints, until
such time as creeping is resumed.

Spypoints on predicates are enabled with spy or spyall, and
removed with either nospy or nospyall. Predicates for which
spypoints are enabled are displayed with 11 **" to the left of the
invocation number. When leaping, the debugger displays port
and variable information only for the predicates marked with
spypoints, although the complete ancestor history is available.
For example,

?- debug.
?- spy (parent) .

?- mother (_X) .
** (1) 1 call: parent(_X) ?

displays the call port for parent bypassing the port for mother
and prompts the user for action. After a creep followed by a leap
, the output is

?- mother (_X).
** (1) 1 call: parent(_X) ? c

(2) 2 call: has_child(_X) ? 1
** (1) 1 exit: parent('Krystyna') ?

Note that the exit port for the call to has child is not shown. The
leap command causes the debugger to go straight to the port of
the next spied predicate, which in this case is the exit from
parent.

BNR Prolog User Guide

Chapter 19 The Debugger 285

To change the amount of prompting that the debugger demands,
spy can specify a leash list for a predicate, as well as mark it for
spying. For example,

?- spy([call, exit], parent).
?- spy([redo], female).

sets spypoints for both parent and female, and sets prompting
only for the specified ports for those predicates. At the unleashed
ports for the spied predicates, the debugger displays information,
and moves on to the next port without pausing. Thus, the
following

?- mother(_X).

** (1) 1 call: parent(_X) ? 1
** (1) 1 exit: parent ('Krystyna') ? 1
** (2) 1 call: female('Krystyna')
** (2) 1 exit: female('Krystyna')

?- mother('Krystyna').
** (2) 1 redo: female('Krystyna') ? 1
** (2) 1 fail: female('Krystyna')
** (1) 1 redo: parent('Krystyna')
** (1) 1 exit: parent('Jean_Jaques') ? 1
** (3) 1 call: female ('Jean _Jaques')
** (3) 1 fail: female ('Jean_Jaques')
** (1) 1 redo: parent('Jean_Jaques')
** (1) 1 fail: parent(_X)

When creeping, step by step tracing is performed on all but those
spied predicates for which leash lists have been specified. If the
spypoints are set as follows,

?- spy([], parent, female).

the same output is produced by the query, but there is no pause at
any port.

BNR Prolog User Guide

286 Part V Miscellaneous

Skipping

Skipping creates a temporary spypoint for the current predicate.
Thus, when skipping, the debugger displays port and variable
information only for the predicate at which the skip command is
given. For example,

?- trace().

?- father (_X) .
(1) 0 call: father(_X) ? s
(1) 0 exit: father('Jean_Jaques') ? s
?- father('Jean_Jaques').

(1) 0 redo: father('Jean_Jaques') ? s
(1) 0 fail: father(_X) ?

Any spypoints that may exist are ignored when skipping. A skip
command at an exit of fail port is interpreted as a creep.

?- spy (female) .

?- mother(_X).

(1) 0 call: mother(_X) ? s
(1) 0 exit: mother('Krystyna') ? s
?- mother('Krystyna').

(1) 0 redo: mother('Krystyna') ? C

** (2) 1 call: female('Jean_Jaques') ? s

** (2) 1 fail: female ('Jean _Jaques') ? s
(1) 0 fail: mother(_X) ? C

BNR Prolog User Guide

Chapter 19 The Debugger 287

Entering the Listener

It is possible to enter the listener and execute some other call in
the middle of the debugging session. When break is called or the
b command is submitted to the debugger, the Prolog listener is
called. For example,

?- mother (_X) .
(1) 0 call: mother(_X) ? c
(2) 1 call: parent(_X) ? b

*** Debugger temporarily turned off***

Break (level 1)

?-

enters the listener at the time of the call to parent. At this point,
all the facilities of the Prolog system are available. However, it is
important to keep in mind that the debugging session is still on
the goal stack, and that the main goal (mother) is still being
executed. The execution break causes a new instance of the
listener to be executed as a subgoal of mother. The debugging
session resumes with a call to continue:

?- continue.
Exit Break (level 1)

*** Debugger turned back on ***

(2) 1 call: parent(_X) ?

The break mechanism should be used with caution. Any
changes made during a break in program execution are in effect
as soon as debugging resumes.

BNR Prolog User Guide

288 Part V Miscellaneous

Debugging Event Handlers

Event handlers (as described in the chapter "User Interfaces")
pose special debugging problems since all interactions with the
system are through events, including those in the debugger.
Debugging event handlers (with ports leashed) does not work
unless the debugger's event loop runs with debugging off.
Similarly, general interaction with the system becomes difficult
unless the system listener disables debugging.

A special predicate called trace_event (_Event_List ..)
provides an event loop with the debugger enabled. Event List
is a list of either event names (for example user key) or event
usage patterns (such as Event (W, D1, D2)) which can be
used to filter out the relevant event sequence~ Only events
matching an element of Event List are output to the console,
al though all are execu teci. -

Note that if the debugger stops at any port, then subsequent
events may be consumed by the debugger. If any ports are
leashed, user interaction with the debugger can perturb both
event sequences and timing considerations. One way to debug
event sequences is to use trace event to generate an event
sequence for output. This output can then be passed as an
argument to replay events (Events ..) as many times as
required while debugging the handlers. This method of
debugging is limited to handling a single event loop at a time.

The following definitions for trace event and replay events
closely resemble their built-in counterparts. -

trace_event :- $trace_event(_F(_, _, _)).

trace_event(_Xs ..) :- $trace_event(_Xs ..).

$trace_event(_Xs ..) :-
nodebug,
$adjust_events(_Xs, _Ys),
repeat,
userevent(_E, _w, _D1, _D2, noblock),
$trace_event_aux(_E(_W, _D1, _D2), _Ys).

BNR Prolog User Guide

Chapter 19 The Debugger 289

$trace_event_aux(_E, _Events)
not(not(member(_E, _Events))),
write('\n'), writeq(_E), writeq(','),
debug,
fail.

$trace_event_aux(Event,
[_Event, cut) ,
fail.

$trace_event_aux(,
nodebug,
fail.

replay_events(_Events ..)
debug,
member(_Event, _Events),
[_Event, cut) ,
fail .

replay_events(..) .

$adjust_events ([), [)) .

$adjust_events([_F(_Args ..), _Xs ..), [F(Args ..), _Ys ..))
$adjust_events(_Xs, _Ys).

$adjust_events([_F, _Xs ..), _F(,
$adjust_events(_Xs, _Ys).

) , _Ys .. l)

The "BNR Prolog Reference Manual" provides further
information about debug commands, and a description of some
predicates that are available to those who wish to tailor the
debugger to suit their own needs.

BNR Prolog User Guide

Chapter 20 Prolog Compatabllity Issues 291

Chapter 20
Prolog Compatibility Issues

This chapter is primarily aimed at the reader who is familiar
with other Prolog systems, particularly those belonging to the
Edinburgh family (such as C-Prolog, Quintus Prolog,
Arity/Prolog or ALS Prolog). Those characteristics of
BNR Prolog that are different from Edinburgh Prologs are
highlighted, and the rationale behind the differences is provided.

For the most part, BNR Prolog is a superset of Edinburgh
Prologs, and therefore programs written in Edinburgh dialects
can be ported without difficulty. However, those programs
dealing with the structure of clauses, terms, and lists, so called
metaprograms, require an awareness of some of the underlying
semantic differences.

Most of the built-in predicates and operator declarations found in
Programming in Prolog by Clocksin and Mellish are provided.
Those few predicates that are not are built-in, such as functor,
"= .• ", and call, are unnecessary, but they are defined in the file
Edinburgh that is provided with the software. This file should be
loaded to facilitate porting programs written in an Edinburgh
dialect.

Sequences

Argument sequences, lists, and clause bodies are all expressed
in a uniform notation. Since these structures play such an
important role, it is helpful to review the idea of a list as it is
presented in other Prolog systems, and to explain the design
considerations that move BNR Prolog away from that model.

BNR Prolog User Guide

292 Part V Miscellaneous

Edinburgh Lists

In most Prolog implementations, a list is represented by the
Prolog structure

. (CAR, CDR)

where 11 • 11 is a binary functor, and CAR (the first element) and
CDR (the remainder) are any Prolog terms. This is a straight
forward representation of the LISP concept cons cell. Usually,
the functor 11 • 11 is defined as an infix operator so the expression
above may also be written as

CAR. CDR

If the CDR of a cons cell is itself a structure of the same form, the
result is a nested sequence of structures that make up the list.
For example,

. (apple, . (orange, . (kiwi, [])))

is a typical list. Note that the last CDR in this nested structure is
the special atom [], a conventional notation for terminating the
last cons cell in a list. Lists that terminate in [] are called
proper lists. The proper list may be written more succinctly by
an alternative notation that shows only the CAR elements of the
structure, for example:

[apple, orange, kiwi I []]

The special symbol, 11 I 11 , which serves as the separator between a
sequence of list elements and the list of remaining elements,
may be omitted if [J is the last remainder, as in:.

[apple ,orange ,kiwi]

To denote an extensible list, use a logic variable in the CDR.
Thus,

[CAR I CDR]

represents a list with one or more elements.

BNR Prolog User Guide

Chapter 20 Prolog Compatabllity Issues 293

The proper termination of lists with the empty list, [], is usually
not enforced. Since lists are constructed out of pairs, the
structure

[apple, orange I kiwi]

is a perfectly acceptable list that might well have been
constructed by unifying a variable, for example,

[apple, orange I Fruit], Fruit= kiwi

However, most predicates which recursively operate on lists,
such as the ubiquitous append, may in fact fail if the lists are
improper. For example, with the usual definition of append

append([], L, L).
append([H IT], L, [HI R]) :- append(T, L, R).

the question

?- append([apple I orange], [kiwi], L).

fails, but

?- append([kiwi], [apple I orange], L).

succeeds with L = [kiwi, apple I orange]. For the same
reason,

?- append(banana, [kiwi], L).

fails whereas

?- append([kiwi], banana, L).

succeeds with L = [kiwi I banana]. Furthermore, there
seems to be no way to protect from this type of behavior.

BNR Prolog User Guide

294 Part V Miscellaneous

BNR Prolog Lists

BNR Prolog addresses these problems by building the notion of a
sequence of terms into the basic semantic model. The bracket
notation

[apple, orange, kiwi]

is used to represent a proper list of elements and the notion of a
proper list (that is, a true sequence) is a primitive construct in
the language.

A tail variable, which unifies only with a sequence of list
elements, is used to refer to an arbitrary sequence of elements in
a list. Since this variable can refer only to the contents of a
proper list, it has a special notation: a variable name followed by
an ellipsis. For example, the list

[_first, _second, _rest ..]

refers to a proper list with two elements or more elements.
Compare this with the expression

[First, Second I ERest]

which, in Edinburgh Prolog, refers to a list containing two or
more elements. Although rest .. appears to be simply an
alternative notation for I ERest, this is not the case. The tail
variable rest . . refers only to a sequence of zero or more Prolog
terms, whereas ERest can refer to any kind of term.

Because tail variables refer to the sequence of elements in a list,
it is possible to express the idea that Lis a proper list simply by
writing -

_L = [_X ..]

There is no apparent way to express this idea in Edinburgh
Prolog.

BNR Prolog User Guide

Chapter 20 Prolog Compatabillty Issues 295

To ease the portability of Edinburgh programs which do not rely
on the underlying semantics, the following coercions are
performed on input:

- [_A, _B ..] can be expressed as [_A _B]

- [_ B .•] can be expressed as_ B

Thus, the last clause of the standard predicate append can be
written as

append([H I T], L, [H I R]) :- append(T, L, R).

which is coerced to

append([H, T •.], L, [H, R .. l) :-
append([T .. l, L, [R .. l).

Note that the list [H I symbol] is flagged as a syntax error,
ensuring that improper lists cannot be input; the internal
semantics insures they can never be created.

To illustrate the behavior of tail variables, consider the following
unifications.

Goal Result

[a, _x .. l = [a, bl _x .. l = [bl
[_X .• l = [a, bl [_X .. l = [a, bl
[_ X •• l = [] [_ X ••] = [l
[_ X, _ Y •• l = [al _ X = a, [_ Y •• l = [l
[a, _C .• l = [_B, _D ..] B = a, [_C .. l = [_D ..]

[_a, _b ..] a = _f,
[_f, _g, _h ..] [_b ..] = [_g, _h ..]

In summary, BNR Prolog terms are constructed from lists
rather than lists from terms. The notable characteristics of lists
are summarized as follows:

- lists are always proper lists, that is the last remainder of a list
is always the list with zero elements, []

BNR Prolog User Guide

296 Part V Miscellaneous

- all conventional list manipulation techniques apply to
BNR Prolog lists

- while the II I II notation is supported, it is simply shorthand for
the tail variable notation

- tail variables (variables of the form Var ..) may occur only as
the last term in an explicitly written list

- the list with an indefinite number (zero or more) of elements
is written [_ Var ..]

The added expressive power offered by tail variables is further
apparent in the sections that follow.

Sequences in Terms

Sequences may be used to represent lists, argument parameters
and executable goals in a uniform manner. Moreover, they
provide a mechanism for expressing variable functors and
variadic predicates.

Structures

The general form of any BNR Prolog structured term can be
expressed as

_Functor(_Args ..)

where Functor is the principal functor and the list of
arguments to Functor can be expressed by [Args .. J. Thus
the unification -

_F(_Args ..) = father(jupiter, vulcan)

succeeds with_F bound to father, and_Args .. bound to the
sequence jupiter, vulcan.

BNR Prolog User Guide

Chapter 20 Prolog Compatability Issues 297

Variable functors and argument lists make it possible to express
generic classes of structured terms:

f (_x, _Y) % structure f with 2 arguments
f(_x, _Y ..) % structure f with 1 or more arguments
f (_x ..) % any structure f
_F(_x, _Y) % any structure with 2 arguments
_F(_x, _Y ..) % any structure with 1 or more

% arguments
_F(_x ..) % any structure

This ability to unify structured terms with variable structures
makes the Edinburgh term examination predicate functor and
= . . redundant. Every occurrence of

functor(_Term, _Functor, _Arity)

can be replaced by the unification

Term= _Functor(_Args ..)

and the arity of the term is simply the length of the list
[_ Args ..] , which can be obtained by

termlength([_Args ..], _Arity,

One advantage of this representation is that Term has a very
general structure, without either Functor or Args ..
necessarily being bound. The predicate functor, on the other
hand, requires either that Term be a non-variable, or that

Functor and Arity arebound to an atom and an integer
respectively. -

BNR Prolog User Guide

298 Part V Miscellaneous

In BNR Prolog the structure of a term is explicit in its syntactic
form. If a term does not have an argument list, for example, it
will not unify with the expression Functor (Args ..) . Thus,
the following - -

Succeed Fail

test() = _F(_Args ..) test
'I' (a, _c ..) = _F(_Args ..)
(3 + 5) = _F (_Args ..) 1988

_F (_Args ..)
1.35e15 = _F(_Args ..)
_F (_Args ..)

Note the distinction between the 0-arity functorial structure
test () and the symbol test, which is its principal functor.

The use of lists as arguments to predicate names simplifies and
increases the efficiency of some common programming tasks.
For example, consider the predicate build, which constructs a
list of binary terms from a pair oflists (the arguments) and a
principal functor.

build(_, [l , [l , [l) .
build(_F, [_Al, Als ..], [_A2, _A2s .. J,

[_F(_Al, _A2), _Rest ..]) ·

build(_F, _Als, _A2s, _Rest).

A superficially equivalent program in Edinburgh Prolog is

build(_, [l , [l , [l) .
build(_F, [_Al I _Als], [_A2 I _A2s], [_T I Rest]) .

T = .. [_F, _Al, _A2],
build(_F, _Als, _A2s, _Rest).

In either case, a query of the form

?- build(in, [_Pl, _P2], ['Ohio', 'Iowa'], _T).

binds the variable T to the list

[in(_Pl, 'Ohio'), in(_P2, 'Iowa')]

BNR Prolog User Guide

Chapter 20 Prolog Compatablllty Issues 299

Suppose the principal functor of the term is not known at the
time of the call to build, but can only be determined sometime
after the call. In such a case, the Edinburgh program fails
(since = . . fails if F is not an atom) whereas the BNR Prolog
program succeeds-with the same result. For example,

?- build(_F, [_Pl, _P2], ['Ohio', 'Iowa'], _T),
F = state.

binds T to

[state(_Pl, 'Ohio'), state(_P2, 'Iowa')]

There is also an efficiency advantage here. To alternately build
this list with state and in as the principal functors of the
structure, not only must those atoms be bound prior to calling
build, but the structures must be rebuilt from scratch. Thus, in
Edinburgh Prolog the only way to produce alternative lists is with
the question

?- (F =state; F = in), build(F, [Pl, P2, P3],
['Ohio' , 'Iowa', 'Texas'] , T) .

which requires twice as much processing as the BNR Prolog
question

?- [build(F, [Pl, _P2], ['Ohio', 'Iowa'], _T),
(_F =state; _F = in)] .

The reason is that F need not be instantiated, in BNR Prolog,
before the call to build, whereas it must be instantiated in
Edinburgh Prolog.

The capacity to unify structures with variable predicate names
also makes metalogical programs fully backtrackable and
therefore more declarative.

BNR Prolog User Guide

300 Part v Miscellaneous

Clauses

The general notion of a sequence suggests a uniform
representation of clauses in which the body is a list of terms.
With this representation, meta programming is simply a type of
list processing. The general form of a BNR Prolog clause is

_Functor(_Args ..) :- [_Body ..].

where Functor is a symbol (the predicate name), whose
argument list is [_Arg s .. J •

The body of the clause is the list [Body ..] . Since the body of a
clause is always a list, it follows that lists are executable terms.
The execution semantics of the sequence of elements in a list is
simply that of logical conjunction, making the Edinburgh Prolog
comma operator, 11

,
11 unnecessary. Executing the empty list [J is

equivalent to executing the atom true.

A fact that is entered as

brother(groucho, harpo).

is represented internally as a clause with an empty body:

brother(groucho, harpo) :- [].

Edinburgh syntax is accepted by permitting clause bodies to be
written without brackets. Thus, the clause

f :- a, b, c.

is coerced upon input to

f () : - [a, b, c] .

All the sequences in BNR Prolog, including argument sequences
to predicates and clause bodies, may be manipulated with all the
usual list handling programs such as member, append, length
and so on. The list nature of clause bodies means that all
programs that examine the structure of clauses should be
modified to handle list structures instead of terms with the 11

,
11

BNR Prolog User Guide

Chapter 20 Prolog Compatabllity Issues 301

operator. For example, the simple metacircular interpreter,
interpret, written in Edinburgh Prolog as

interpret(true) :- !.
interpret((GoalA, GoalB)) .

I . ,
interpret(GoalA),
interpret(GoalB).

interpret(Goal) :
clause(Goal, Body),
interpret(Body).

must be modified to read

interpret ([)) : - ! .
interpret ([_Goal, _Goals ..)) · -

interpret(_Goal),
interpret ([_Goals ..)) .

interpret(_Goal(_X ..)) :-
clause(_Goal(_X ..) :- [_Body ..)),
interpret ([_Body ..)) .

(Note that the BNR Prolog predicate clause takes one argument
while the Edinburgh version takes two.) The cut in the second
clause in the Edinburgh program is unnecessary in the
BNR Prolog version.

The use of BNR Prolog lists to represent the sequence of
arguments to a predicate allows for the definition of predicates
with a variable number of arguments. For example, it is
possible to write interpret so that it takes a variable number
(zero or more) of arguments, in much the same way as the
recursive list definition is written. Note the changes in the
argument lists from the previous definition.

interpret() :- !.
interpret(_Goal(_X ..)) :

clause(_Goal(_X ..) :- [_Body ..)),
interpret(_Body ..).

interpret(_Goal, _Goals ..)
interpret(_Goal),
interpret(_Goals ..) .

BNR Prolog User Guide

302 Part V Miscellaneous

The convenience of variadic predicate definitions should become
evident when using the BNR Prolog input/output primitives as
well as the basic type filters.

The possibility that a predicate may have any number of
arguments also lessens the importance of the concept of arity in
BNR Prolog. Predicates are therefore referred to by name rather
than by name and arity.

In BNR Prolog, for the sake of consistency, predicates that take
no arguments should be written with an empty argument list.
For convenience, however, the parser accepts 0-arity predicate
definitions without the empty argument list. Thus,

test :- write('hello'), nl.

is coerced to

test():- [write('hello'), nl).

Observe that only the clause head test is coerced to be the 0-arity
functor, the symbol nl in the body of the clause remains
unchanged. It is only when symbols like nl, test, true or fail
are called as goals that they are interpreted as calls to the 0-arity
predicates nl (), test (), true () or fail (), respectively.

Operators

Operator declarations in BNR Prolog are facts in the clause
space and may be asserted and queried like any other predicate.
A symbol may only have one operator precedence number
associated with it. For example, the infix operator

op (1000, xfy, ' & ').

cannot also be declared prefix with a different precedence
number, such as

op(900, fx, '&').

The only other restriction is that an operator cannot be defined as
both prefix and postfix.

BNR Prolog User Guide

Chapter 20 Prolog Compatability Issues 303

The increased importance of arithmetic in BNR Prolog has
resulted in a minor adjustment in operator definitions. The
Edinburgh arithmetic equivalence operator, "=:=",has been
changed to"==", as in the C programming language. This has a
small ripple effect on some of the other operators, as
summarized in the following table:

Function Edinburgh Prologs BNR Prolog

literal identity
literal non-identity
arithmetic equality

@=
\== @\=

The operators "=:=", "=\=",and"\==" are defined in the
Edinburgh compatibility file as equivalent to 11 == 11

, "<>", and
"@\=" respectively. Therefore only Edinburgh 11== 11 must be
changed to"@=". Other operators which are predefined in
BNR Prolog but not often found in other Prolog systems are

op(lOOO, xfy, I & I) % conjunction
op(950, xfx, 'where') % constraints
op(950, xfx, 'do') % used with foreach
op(700, xfy, I; I) % external parameter typing

Note that there are no operator declarations for ". "(cons) or
"= .. " (univ) or 11 , 11 (and).

Comma as an Operator

One of the consequences of using the list structure for clause
bodies is that the comma is not an operator. Therefore, all
operators, regardless of their relative precedence, bind tighter
(have higher precedence) than comma. For example, the
following expression, which has no precedence enforcing
parentheses,

breakfast :
english -> tea
oj,
milk.

coffee,

BNR Prolog User Guide

304 Part V Miscellaneous

is interpreted by the BNR Prolog parser as:

breakfast() : -
[

((english -> tea)
oj,
milk

] .

coffee),

Parentheses around terms separated by 11 , 11 are not necessary,
because operator precedences need not be overridden.

BNR Prolog User Guide

Appendices 305

BNR Prolog User Guide

Appendix A: BNRProlog Desktop 307

Appendix A:
The Prolog Desktop

The desktop provides of a set of predefined pull down menus for
access to the desk accessories, file handling, editing, managing
windows, and consulting files. In addition to these menus,
users can take advantage of the man/machine interface
capabilities to define their own menus or modify the standard
ones. Some menu options may be invoked by predefined
Command keys specified with 3€ in the right hand side of each
option.

ti(Apple) menu

The ti menu provides access to your Macintosh desk accessories
and information about the installed version of Prolog.

l::JI File Edit Find Window Contewts

~:i About BNR Prolog

jJjjjj Alarm Clock

!l Calculator
J: Chooser
m Control Panel
t: Find File
I::: Key Caps
)[Scrapbook

• menu

BNR Prolog User Guide

308 Appendices

File menu

The File menu provides several options for handling files and
specifying printing parameters.

~-:-:·-:-~_:. _____ ,
So11e
:;~(tO ~:n ...
So11e o Copy os ...
Re11ert to So11ed

Poge Setup ...
Print Window ... H P

Rename .. .
Delete .. .

Quit

File menu

The File menu options are:

New ...

Open ...

creates a new text window for a new text file. The
file has default attributes. A dialog is presented
where the default name and folder can be changed.

provides a dialog that permits selection of an existing
text file to be opened with default attributes. The
newly opened file becomes the currently active text
window. Note that opening a file does not add the
contents of the file to the knowledge base.

BNR Prolog User Guide

Appendix A: BNRProlog Desktop 309

Close closes the currently active text window and activates
the previous active window. A dialog provides the
option of updating the file on disk if there are any
outstanding changes. If the file has a foreign
creator, an additional dialog is invoked to confirm
the intent to overwrite the original file.

Saue updates the disk version of the file of the currently
active window. This option is enabled only if there
are outstanding changes. If the file has a foreign
creator, an additional dialog is invoked to confirm
the intent to overwrite the original file.

Saue as ... stores a version of the file of the currently active
window on disk. A dialog permits the user to specify
both the file name and the folder. The original
window is closed without updating, and a new
window is opened for the saved file.

Saue a Copy as ... stores a version of the current text window on
disk. A file dialog permits the user to specify both
the file name and the folder. The current window is
not affected.

Reuert to Saued replaces the contents of the currently active
text window with the version of the file that is stored
on disk. This option is enabled as soon as the
currently active window diverges from the saved
version.

Page Setup ... allows specification of printing parameters for
the current Prolog session. This option has no effect
on the setup of the disk version of open text windows.
Default parameters are
US Letter,Font Substitution,Smoothing,
Fasterbitmap,Portrait,100%
reduction/enlargement.

Print Window ... prints the contents of the currently active text
window, presenting a dialog permitting specification

BNR Prolog User Guide

310 Appendices

of copies, pages, cover page and paper source
information.

Rename ... permits renaming of any disk file, and its associated
text window, if any.

De I et e ... permits deletion of any disk file. If the file is
currently open in a text window, a dialog queries for
verification of the closure and deletion.

Quit provides an exit from the Prolog system. Dialog
boxes are provided to confirm disk updates for text
windows with outstanding content changes.

Edit menu

The Edit menu provides selection, formatting, and cut and paste
options. Selected strings can be transferred between windows

Window ConteHts

Edit menu

The Edit menu options are as follows:

BNR Prolog User Guide

Cut

Copy

Paste

Clear

Appendix A: BNRProlog Desktop 311

deletes the current selection from a text window and
places it on the Clipboard. This option is enabled
once a piece of text is selected.

copies the current selection on the Clipboard. This
option is enabled once a piece of text is selected.

copies the contents of the Clipboard into a text
window at the position of the cursor, replacing any
existing selection. This option is enabled
immediately after a cut or a copy operation.

deletes the current selection from a text window.

Select RII selects all text in the currently active text window.

Format... provides a dialog that permits font selection, as well
as specification of font size, tab size, and tab/space
conversion. If a file is created elsewhere, tab
characters that exist in the text appear as spaces.
Use of the tab key generates the specified numbers of
space characters.

Find menu

The Find menu provides several searching and editing options.
All options operate on the currently active window based on three
search parameters: search string, search direction, and case
sensitivity. The Find ... and Replace ... commands provide
dialogs in which the search parameters can be specified. The
Replace ... command also permits specification of a replacement
string. A search always starts from the current position of the
cursor in the specified direction.

BNR Prolog User Guide

312 Appendices

Window ConteHts

3C
find Same 3C
find Selection 3C

find menu

The find menu options are as follows:

find ... displays a dialog box to allow specification of the
search parameters. It then locates the next
occurrence of the specified search string from the
current position of the cursor.

find Some locates the next occurrence of the previously
specified search string.

find Selection replaces the existing search string with the
currently selected text, and locates the next
occurrence of the new search string.

Replace ... displays a dialog box to allow specification of the
search parameters, the replacement string, and the
desired operation. The operation is then performed,
starting from the current position of the cursor.

BNR Prolog User Guide

Appendix A: BNRProlog Desktop 313

D Search Bockwords

181 Cose Sensitive

((Replace)) (Replace flll) (Find) (Cancel)

Replace dialog box

Replace Same replaces the existing search string with the
replacement string.

Search Backwards is a toggle command that is used to specify
the search direction parameter. A backward search
is enabled if the menu item is check marked. The
default is a forward search. This parameter is also
toggled with the Search Backwards option in Find ...
or Replace ... dialogs.

Window menu

The Window menu provides control of currently open windows.
Windows can be selected by using this menu or by clicking in a
visible portion of the window. The current default output
window, can also be accessed through use of the Command -K
sequence. The menu consists of three sections: the window
commands, the text window list, and the graphics window list.
Window commands are as follows:

Tile Te Ht Windows reorganizes text windows into a set of tiles
that do not overlap. This provides window visibility
quickly without shifting all the windows and
readjusting their sizes individually. Desk

BNR Prolog User Guide

314 Appendices

accessories and graphics windows are not affected by
this command.

Hide Window makes the currently active window invisible, and
the window beneath it becomes active. Selecting
hidden windows from the menu reveals them.

The window lists display information about all open windows.
The following notation is used to represent window attributes:

- underlined window name signifies outstanding changes

- t to the left of a window name signifies a text window

- g to the left of a window name signifies a graphics window

- the window name in bold font signifies the currently active
window

- the window name in italic font signifies the window is hidden

In the following example, Console is the default output
window, and Dragon exists as both a graphics and a hidden text
window. The Dragon graphics window is the currently active
window.

BNR Prolog User Guide

• File Edit Find

Appendix A: BNRProlog Desktop 315

ConteHts

Tile TeHt Windows
Hide Window

t DISK:plg:Conso/e HK
t DISK:plg:Demos:Dragon

6 dragon

7
:.:.:.: .. :.:.::*··'· .'..:.:,. .. :.:.:.:.:.:.1f .·l .. :.:.· ... :.:_:_:,:.· .. :;.:.:.:.: .. :.:.:.:.:.:.:.:.:.:.:.:.·.:.: : .. : ... :.:.:.:.:.: ... : :.:.:.:.:.1. l ... · .. . ·.~•~i.< \ .~:.:.\::: :..1/ .11f .·.:: .. :.

Window menu

ConteHts menu

Prolog stores clauses (facts or rules), in memory in a stack like
structure of modules called contexts. The current context is the
top of the stack. Contexts are created either by loading a window
or a file, or by creating a dynamic context.

For example, in the following picture, selecting the family
context from the Lood Conte Ht submenu causes the deletion of
the existing contexts for both family and Picture, followed by
the reloading of first family and then Picture.

When loading a file or a context for which there is an open text
window, the window version of the file is loaded. Reloading a
context whose original window was created by an
enter context command is not possible. See the chapter
"Contexts" for more detailed information on contexts.

BNR Prolog User Guide

316 Appendices

ConteHts menu

The Contexts menu consists of two sections, the context
commands and the contexts list. The commands are as follows:

Load Window loads the contents of the currently active window.

Load File ... loads the contents of the currently active window
into a new context, or reloads an existing context
from the currently active window.

Load ConteHt permits selection and reloading of existing
contexts from a submenu.

[Hit ConteHt permits selection and removal of existing contexts
from a submenu ..

The context list is an ordered list of all existing contexts starting
with the current context. Clicking on a context name displays a
dialog box that permits selection of clauses in that context for
listing in the output window.

BNR Prolog User Guide

Appendix A: BNRProlog Desktop 317

Menu Command Shortcuts

The following is a list of the Command key shortcuts that are
available in BNR Prolog, along with comments on their use.

Command-A

Command-C

Command-D

Command-F

Command-G

Command-H

Command-J

Command-K

Command-L

Command-N

Command-0

Command-P

Command-Q

Command-R

Command-S

Command-T

Select All, from the Edit menu

Copy, from the Edit menu

Search Backwards, from the Find menu

Find ... , from the Find menu

Find Some, from the Find menu

Find Selection, from the Find menu

Tile TeHt Windows, from Window menu

current default output window, from Window
menu

Load Window, from the ConteHts window

New, from the File menu

Open, from the File menu

Print Window, from the File menu

Quit, from the File menu

Replace, from the Find menu

Soue, from the File menu

Replace Some, from the Find menu

BNR Prolog User Guide

318 Appendices

Command-V

Command-W

Command-X

Command-¥

Command-Z

Editing Keys

Poste, from the Edit menu

Close, from the File menu

Cut, from the Edit menu

Format ... , from the Edit menu

Undo, from the Edit menu

BNR Prolog supports a number of keys for editing the contents of
text windows. The following is a list of the key commands that
are not shown on the Edit menu. A list of the menu command
shortcuts can be found in the chapter "Command Shortcuts".

delete removes the character to the left of the cursor when
there is no selection. Otherwise the selected text is
removed.

Command-delete deletes the text from the cursor to the top of the
file. If text is selected, the cursor is assumed to be to
the left of the selection.

clear deletes the character in front of the cursor when
there is no selection. Otherwise the selection is
removed.

Command-clear deletes the text from the cursor to the end of the
file. If text is selected, the cursor is assumed to be to
the right of the selection.

Command-- displays the first page and places the cursor at the
beginning of the file.

Command-+ displays the last page and places the cursor at the
end of the file.

BNR Prolog User Guide

Appendix A: BNRProlog Desktop 319

Command-J places the cursor at the start of the last line of text in
the window. If already on the last line, the file is
paged ahead, and the cursor is placed on the last line
of the next page of the file.

Command- iplaces the cursor at the start of the first line of text
in the window. If already on the first line, the file is
paged back, and the cursor is placed on the first line
of the previous page of the file.

Command-~ moves the cursor to the beginning of the current
line.

Command--? moves the cursor to the end of the current line.

Execution Control Keys

Command-. aborts execution if request confirmed by a dialog

Methods of Text Selection by Mouse

double click to select the word on which the mouse is positioned.

double click on a left or right parenthesis, brace, or bracket to
select all text up to the matching parenthesis,brace,
or bracket. Nested occurrences of these characters
are properly handled.

double click on the leftmost single or double quote to select all text
up to the next quote.

triple click to select the line on which the mouse is positioned.

shift click to extend or shorten an existing selection to the
current position of the mouse.

BNR Prolog User Guide

Index 321

BNR Prolog User Guide

$
$initialization 192, 195
$local 207

A
accumulate 166
acyclic 60, 104
Algebra

Boolean 67, 74
altdboxproc 219
append 44, 293
Application

concurrent 215
exiting 27

Argument
actual 39
formal 39
instantiation of 40

Arithmetic
evaluation of 120, 139
functional 119-125
operators 97
relational 131, 157-171

solving equations 161
summary 171

validation of formulae 121
assert 107, 197, 201
asserta 197
assertz 197
at180
attention_handler 275

B
Backtracking 15, 32, 40-43, 85

Index 323

prevention of 84
with intervals 137

base 191
beginpicture 231
Behavior

nonlogical 119
block 83
BNR Prolog

development environment !
icons 19
using 19-27

bucket61
build_application 268

C
Call 32

mechanism of 14, 35
reduction step of 14, 35, 40
unification step of 35, 39-40

capsule 274
Choicepoint 40

removal of 81
choose 50
circuit 48
Clause 13

body of34
definition access 196
external 265
head of34
local 194
name of34
ordering 41, 46, 194
overloading 194
syntax of 34, 300

Clause space 16
close 179, 182
close_definition 195
closewindow 221
closure 93

BNR Prolog User Guide

324 Index

Code Resource 24 7
Command Key 307

+318
-318
. 23,319
A317
C317
clear 318
D317
delete 318
F317
G317
H317
1317
J317
K313,317
L317
N317
0317
P317
Q317
R317
S317
T317
V317
W317
X317
Y317
Z317
~318
i318
➔318
J,318

Comment
nested 32
syntax of32

Comparisons
arithmetic 90

Conditions
efficient 90

BNR Prolog User Guide

ground 90
joint 14

configuration 262
confirm 236
Conjunction 32, 4 7

of passive constraints 69
Constraint

active 70, 89-95, 125
data flow 70, 126
passive 69-79, 125

backtracking with 71
common constructs 73
interpolation 72
joint 75

syntax of 70
Context 190

creation of 315
current 190
dynamic 315
exiting 26, 193
lists 316
loading of 269
new 191
predicate local to 194
reloading of 192, 315
userbase 262

continue 287
cputime 265
cut81

ancestral 82
list 83
negative effects of 82

D
dboxproc 219
debug280
Debugging 277-289

break 287
commands 280

creep 279,281
depth number 278
invocation identifier 278
leap 279,284
port

call 277 -279
exit 277-279
fail 277-279
redo 277-279

skip 279, 286
spypoint 279,284

decompose 104, 112
definition 196
delta 135
Demos 4
Dependency

functional 91-95
Dialog 236-238

types of236
dinner_party 76
Disjunction 46

of passive constraints 69
Document

saving of 27
documentproc 220
dograf 226, 231
dotext222

E
enablemenus 234
end_of_file 180, 181
endpicture 231
enter_context 191, 315
Error

management of 274-275
Event 213-218

asynchronous 212
blocking 216
handler

Index 325

debugging of 288
handler of213-218, 236
idle 217
listener for 218
listener of 213
mouse 229
nonblocking 216
polling for 212, 213-218
priority of 217
synchronous 212

Execution
deferral of 81

exit_context 193
External Procedure

definition of 248
interface to 247
parameters of 249

F
Fact 13

arguments of 34
syntax of34

fail 302
failexit

list 83
failexit(ancestral) 82
Failure 86

call 14
goal 81

File
binary image of 192

Filter 59
complex 66
general 64
monotone 60
persistent 60, 89

findall 107
float 62, 73
Floating point

BNR Prolog User Guide

326 Index

accuracy of 132
syntax of 32

foreach 85
Foreign Language 24 7
forget 204, 207
forgetz 204
fullfilename 224
Functor

arity 297, 302
principal 38, 97, 298
syntax of297
variable 52

G
Generate

and test 74
Generator 70

loop 84
get_char 186
get_error_code 275
get_term 182
Goal 13

deterministic 82
ordering 50
parent81

Goal stack 16
ground 63, 125

H
halt264
hide 197
horner 121

I
if-then 81-84

BNR Prolog User Guide

Inference 14
procedure 15

Input
coercions on 33, 34, 35, 295, 30

Input and Output 174
error detection 182
stream directed 178-182

default 181, 183
pipe 178, 181
pointer 179

symbol 178
symbol directed 184, 185, 186
target 178
term 182-187
text 177-187

inqgraf 226
inqtext 223
Instantiation

process of 13
Integer 62

syntax of32
Interface

C249
dialog 212
graphics 73
menu 212
menu/mouse 20, 22, 27
modal 212,236
parameters 255
Pascal 249-257
resource name 257
user 211-244
window 212-213

Interval
coercion 139, 149
constraint on 140
disjunction of 145
equality of 140
indefinite 134
inequality of 146

intersection of 145
narrowing of 137-141
numeric interpretation of 133, 141
open 146
precision of 150
range of 131
characteristics of 131
regional interpretation of 133, 141
the data type 133
unknown as 151

interval 62
inventory 206
is 120,149

J

K
Key

Command 20
enter 19, 20, 23
return 24

Knowledge
negative 75

Knowledge Base 13, 16, 23, 39, 41,174,
189-199, 300

context in 190

L
Law

associative 55, 132
commutative 51, 69-73
distributive 39
equivalence 35
idempotent 55
reflexive 35, 55

Index 327

symmetric 35, 55
transitive 35

lipsrate 266
List 62, 73

argument 38, 300
as clause body 300
element of 42
empty 34, 293
indefinite 38
proper292
syntax of 33
tail of33

Listener 16, 24
activity box 20

Listing 41
bymenu26
by query 25

listing 197
load_context 191
load_state 206
Logic

formal 12
Horn clause 7, 31, 53
programming 7
symbolic 12

M
Macintosh

file
characteristic of 266

Quickdraw 213
resource 261,267

BNDL270
FREF270
ICN# 269
ICON269
menu233
PICT231

BNR Prolog User Guide

328 Index

Macintosh Programmer's
Workshop 271
maze 87
median 164
member 42, 113
Memory

allocation of 261
memory_status 265
Menu 232-236

Contexts 24, 26, 315
load file 316

Edit310
clear 311
copy310
format311
paste310
select all 311

File 22, 27, 308
close 309
delete 309
new308
open308
page setup 309
print window 309
quit309
rename 309
revert to saved 309
save 309
save a copy as 309
save as309

Find311
find 312
find same 312
find selection 312
replace 312
replace same 313
search backwards 313

heirarchical 233
identification of 233
item in 233

BNR Prolog User Guide

pop-up233
Window 22,313

hide window 314
lists 314
tile text windows 313

li307
menuselect 217,233
message 236
messagebutton 222
midpoint 135
Module

characteristics of 189

N
nameafile 236
Negation

by failure 66-67
classical 67
sound 75

new _state 202, 207, 264
nl 186,302
nogrowdocproc 220
nonvar 61, 73
not 64, 75, 107
numeric 73

0
occurs check 53, 103
once 83
op52,302
open 178, 182
openwindow 219,225
Operation

conditional 84-86, 89-90
Operator 97-101

arithmetic 119-125
comparison 119-125

associativity of 99
comma as 303
declaration of 52, 98-100, 302
infix 98-100
postfix 98-100
precedence of 52, 302, 303
predefined 101
prefix 96-98
restrictions on 100, 302
typeof99

or81

p
Parameter

passing of 13
search 311

permutation 50
PEXT247
PERT plan 126
picttoscrap 232
Picture 232

frame of231
storage of 231

plaindbox 219
portray 107, 186
print 186
print_interval 136
Predicate 34

Calculus 31
central 69
nondeterministic 40
side effect of 59, 66, 72
variadic 34, 302

print 107
Problem

critical path scheduling 126, 14 7
finite state machine 108
gas law 155
magnetism 160

Index 329

silly 271
square 157
Temperature Conversion 1
timetable 142

Program
branch

elimination of 81-83
nonterminating 81
Pascal 250-257

Programming Model 11
procedural 11

Prolog
computational model of 12
Edinburgh 291
extensions of 8
formal properties of 54
fundamental principle of 1
pure 7, 31, 46-57, 61, 69, 81, 1
sequential 41
textbooks 8
versus procedural languag

Property
commutative 82, 126, 139
idempotent 56, 82, 139
monotone 53, 56-57, 69, 139
narrowing 15, 54
persistent 53, 56-57, 69, 139

put_char 186
put_term 182, 185

Q
query 236
Question 14 ..

narrowing of 15
prefix 16

quit264

BNR Prolog User Guide

330 Index

R
range 133, 136
rdocproc 220
read 183
readln 187
Real

accuracy of 132
recall 203, 207
recallz 204
recovery _unit 27 4
Recursion 43

stopping44
reduce 39, 41, 51, 122
reduce_sym 51, 63
Reduction

process of 13
remember 107,203,207
replay _events 288
Requirements

hardware 3
software 3

restart 263
retract 199,201
retract_first 199
Rule 13

s

arguments of 34
body of14
syntax of 34

save_state 206
save_ ws 264, 269
Search

depth first 54
exhaustive 15
tree 54

BNR Prolog User Guide

seek 180
select236
selectafile 236
Selection

of file 24
of text 19, 20, 23, 25
of window 23

selectone 236
Sequence

as a structure 296
set_end_of_file 180
set_trace 269
Side Effect 11, 73, 174, 211

freedom from 54, 59, 89
solve 165
spanning_tree 105, 114
split 162
spy285
spyvar 72
sread 183
Stack

configuration of 262
global 261-263, 265
local 261-263, 265
world 190, 261-263, 265

state 265
State Space 174, 201-208, 264

creation of 203
global 202-206
loading of 206
local 207-208
recall order in 202
removal from 204
storage in 203
storage management 206
updating of 205

Strategy
backtracking 71

stats266
stream 179

Structure 13, 62, 296
cyclic 39, 54, 103-116

representation 105
syntax of33

swrite 183
swriteq 183
Symbol 62, 73,193

as an operator 97
syntax of32

T
tailvar 61
Term

comparison of 65
ground 35, 55, 64, 71
infinite 39

termlength 66, 297
Test

and generate 7 4
timer 265
trace 280
trace_event 288
transform 52
true302
Tutorials 4
Typographic Conventions 6

u
Unification

cyclic structure 103
filters and 60
implicit 39
of ground terms 35
oflists 36, 37
of structures 37
of tail variables 38, 295
of variables 36

Index 331

operator 35, 39
passive constraints and 69
process of 13
properties of 57

update205
useractivate 217
userbase 190
userclose 217
userdeactivate 217
userdownidle 217, 230
userdrag 217, 220
userevent 216
usergrow 217,220
userkey 217, 218, 222, 224
usermousedown 217,225,230
usermouseup 217,225,230
userupdate 217,226
userupidle 217,230
userzoom 217,220

V
var 61, 73
Variable

anonymous 33
binding of 40
constraint 71
functor 297
leading underscore of 33
syntax of33
tail38,294,295

syntax of33

w
Window 219-231

Console 22
current314
frame 219

BNR Prolog User Guide

332 Index

options of 222
graphics 225-231, 314

coordinates of 226
descriptor

nesting of 227
descriptor of 226
rubber lines in 228

query through 23
text 22, 178, 222, 314

descriptor of222
file associated with 222
loading of 24
reloading of 26
selection by mouse 319
tiling of 22

text entry through 23
type221

BNR Prolog User Guide

Work Space 264 •.
write 183
writeq 183

X

y

z
zoomdocproc 220
zoomnogrow 220

♦

I
m z
:a .,, ..
a -a =
C:
(/)
CD
"""""I

G)
C - ·
c:::i.
CD

<

. ~

,.

© Bell-Northern Research lid . 1988

All rights reserved. No part of this publication may be reproduced , transmitted,

transcribed, stored in a retrieval system, or translated into any language by any

means without the written permiss ion of Bell-Northern Research Lid .

Printed in Canada

,...

' .,

..

	Table of Contents
	Part I: Introduction
	1. BNR Prolog Product Information
	2. Logic Programming
	3. The Prolog Model
	4. Using the BNR Prolog System

	Part II: Prolog, a Logica Programming Language
	5. Pure Prolog
	6. Filters and Negation
	7. Passive Constraints
	8. Control
	9. Operators
	10. Cyclic Structures
	Part III: Arithmetic
	11. Functional Arithmetic
	12. Relational Arithmetic
	Part IV: Programming with Side Effects
	13. Text Input and Output
	14. The Knowledge Base
	15. State Space
	16. User Interfaces
	Part V: Miscellaneous
	17. Foreign Language Interface
	18. System Information
	19. The Debugger
	20. Prolog Compatibility Issues
	Appendices
	A The Prolog Desktop

	Index

